mouse glioma
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 30)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
pp. clincanres.0947.2021
Author(s):  
Jian L. Campian ◽  
Subhajit Ghosh ◽  
Vaishali Kapoor ◽  
Ran Yan ◽  
Sukrutha Thotala ◽  
...  

Author(s):  
Michael Zhang ◽  
Quan Zhou ◽  
Chinghsin Huang ◽  
Carmel T. Chan ◽  
Wei Wu ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi207-vi207
Author(s):  
Ganesh Shenoy ◽  
Katie M Troike ◽  
Madison Kuhn ◽  
Becky Slagle Webb ◽  
Amanda Snyder ◽  
...  

Abstract Glioblastoma (GBM) remains one of the most difficult to treat malignancies facing modern medicine. The strong migratory and invasive capacity of GBM cells allows for diffuse invasion into neighboring healthy brain which presents a significant hurdle for complete surgical resection of these tumors. Unsurprisingly, even after receiving maximal surgical resection, radiation and chemotherapy, the majority of GBM patients end up with recurrent disease. Increased expression levels of the homeostatic iron regulator gene (HFE) in brain tumors such as GBM have been associated with poorer outcomes. In order to better understand how HFE expression impacts the adhesive and migratory capacity of GBM, we utilized syngeneic mouse glioma models (KR158, CT2A) that have been transfected to either over-express or under-express HFE. We observed that knocking down HFE in the KR158 model resulted in significantly decreased migratory capacity as well as decreased adhesion to fibronectin and artificial basement membrane. Likewise, overexpressing HFE in a CT2A model resulted in increased adhesion to fibronectin or artificial basement membrane. Since HFE is known to regulate iron uptake, we studied how modulating the iron status of GBM cells impacted their ability to migrate and adhere. We found that increasing the iron pool of these mouse glioma models by exposure to exogenous iron compounds decreased migratory capacity. To better understand mechanistically how HFE and iron status impacted migration and adhesion, we probed how expression of integrins and their downstream signaling molecules, the Rho GTPases were altered in response to iron. We found that exposure to iron decreased levels of the Rho GTPases Cdc42 and RhoA. Furthermore, cells that overexpressed HFE were found to have increased expression of integrin β1 and integrin α5 suggesting that HFE and iron may impact integrins and their downstream signaling pathways to alter migration of GBM cells.


2021 ◽  
Author(s):  
Yuansen Guo ◽  
Shi Wang ◽  
Tunan Chen ◽  
Hua Zhang ◽  
Dandan Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kenji Shono ◽  
Yoshifumi Mizobuchi ◽  
Izumi Yamaguchi ◽  
Kohei Nakajima ◽  
Yuri Fujiwara ◽  
...  

AbstractGlioblastoma (GBM) has high mortality rates because of extreme therapeutic resistance. During surgical resection for GBM, 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence is conventionally applied to distinguish GBM. However, surgical intervention is insufficient for high invasive GBM. Sonodynamic therapy (SDT) combined with low-intensity ultrasonication (US) and PpIX, as a sonosensitizer, is an emerging and promising approach, although its efficacy is limited. Based on our previous study that down-regulation of multidrug resistant protein (MDR1) in GBM augmented the anti-tumor effects of chemotherapy, we hypothesized that elevation of cellular PpIX levels by down-regulation of MDR1 enhances anti-tumor effects by SDT. In high invasive progeny cells from mouse glioma stem cells (GSCs) and a GSC-bearing mouse glioma model, we assessed the anti-tumor effects of SDT with a COX-2 inhibitor, celecoxib. Down-regulation of MDR1 by celecoxib increased cellular PpIX levels, as well as valspodar, an MDR1 inhibitor, and augmented anti-tumor effects of SDT. MDR1 down-regulation via the Akt/NF-κB pathway by celecoxib was confirmed, using an NF-κB inhibitor, CAPÉ. Thus, elevation of cellar PpIX by down-regulation of MDR1 via the Akt/NF-κB pathway may be crucial to potentiate the efficacy of SDT in a site-directed manner and provide a promising new therapeutic strategy for GBM.


2021 ◽  
Vol 21 ◽  
pp. 37-46
Author(s):  
Miika Martikainen ◽  
Mohanraj Ramachandran ◽  
Roberta Lugano ◽  
Jing Ma ◽  
Minttu-Maria Martikainen ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Qingxia Wei ◽  
Olivia Singh ◽  
Can Ekinci ◽  
Jaspreet Gill ◽  
Mira Li ◽  
...  

AbstractOne of the most prominent features of glioblastoma (GBM) is hyper-vascularization. Bone marrow-derived macrophages are actively recruited to the tumor and referred to as glioma-associated macrophages (GAMs) which are thought to provide a critical role in tumor neo-vascularization. However, the mechanisms by which GAMs regulate endothelial cells (ECs) in the process of tumor vascularization and response to anti-angiogenic therapy (AATx) is not well-understood. Here we show that GBM cells secrete IL-8 and CCL2 which stimulate GAMs to produce TNFα. Subsequently, TNFα induces a distinct gene expression signature of activated ECs including VCAM-1, ICAM-1, CXCL5, and CXCL10. Inhibition of TNFα blocks GAM-induced EC activation both in vitro and in vivo and improve survival in mouse glioma models. Importantly we show that high TNFα expression predicts worse response to Bevacizumab in GBM patients. We further demonstrated in mouse model that treatment with B20.4.1.1, the mouse analog of Bevacizumab, increased macrophage recruitment to the tumor area and correlated with upregulated TNFα expression in GAMs and increased EC activation, which may be responsible for the failure of AATx in GBMs. These results suggest TNFα is a novel therapeutic that may reverse resistance to AATx. Future clinical studies should be aimed at inhibiting TNFα as a concurrent therapy in GBMs.


2021 ◽  
Author(s):  
Luiz Henrique Geraldo ◽  
Yunling Xu ◽  
Laurent Jacob ◽  
Laurence Pibouin Fragner ◽  
Rohit Rao ◽  
...  

AbstractSLIT2 is a secreted polypeptide that guides migration of cells expressing ROBO1&2 receptors. Herein, we investigated SLIT2/ROBO signaling effects in gliomas. In patients with glioblastoma (GBM), SLIT2 expression increased with malignant progression and correlated with poor survival and immunosuppression. Knockdown of SLIT2 in mouse glioma cells and patient derived GBM xenografts reduced tumor growth and synergized with immunotherapy to prolong survival. Tumor cell SLIT2 knockdown inhibited macrophage invasion and promoted a cytotoxic gene expression profile, which improved tumor vessel function and enhanced efficacy of chemotherapy and immunotherapy. Mechanistically, SLIT2 promoted microglia/macrophage chemotaxis and tumor-supportive polarization via ROBO1&2-mediated PI3Kγ activation. Macrophage Robo1&2 deletion and systemic SLIT2 trap delivery mimicked SLIT2 knockdown effects on tumor growth and the tumor microenvironment (TME), revealing SLIT2 signaling through macrophage ROBOs as a novel regulator of the GBM microenvironment and a potential immunotherapeutic target for brain tumors.


Author(s):  
Isabel Burghardt ◽  
Judith Johanna Schroeder ◽  
Tobias Weiss ◽  
Dorothee Gramatzki ◽  
Michael Weller

Abstract Purpose Members of the transforming growth factor (TGF)-β superfamily play a key role in the regulation of the malignant phenotype of glioblastoma by promoting invasiveness, angiogenesis, immunosuppression, and maintaining stem cell-like properties. Betaglycan, a TGF-β coreceptor also known as TGF-β receptor III (TβRIII), interacts with members of the TGF-β superfamily and acts as membrane-associated or shed molecule. Shed, soluble TβRIII (sTβRIII) is produced upon ectodomain cleavage of the membrane-bound form. Elucidating the role of TβRIII may improve our understanding of TGF-β pathway activity in glioblastoma Methods Protein levels of TβRIII were determined by immunohistochemical analyses and ex vivo single-cell gene expression profiling of glioblastoma tissue respectively. In vitro, TβRIII levels were assessed investigating long-term glioma cell lines (LTCs), cultured human brain-derived microvascular endothelial cells (hCMECs), glioblastoma-derived microvascular endothelial cells, and glioma-initiating cell lines (GICs). The impact of TβRIII on TGF-β signaling was investigated, and results were validated in a xenograft mouse glioma model Results Immunohistochemistry and ex vivo single-cell gene expression profiling of glioblastoma tissue showed that TβRIII was expressed in the tumor tissue, predominantly in the vascular compartment. We confirmed this pattern of TβRIII expression in vitro. Specifically, we detected sTβRIII in glioblastoma-derived microvascular endothelial cells. STβRIII facilitated TGF-β-induced Smad2 phosphorylation in vitro and overexpression of sTβRIII in a xenograft mouse glioma model led to increased levels of Smad2 phosphorylation, increased tumor volume, and decreased survival Conclusions These data shed light on the potential tumor-promoting role of extracellular shed TβRIII which may be released by glioblastoma endothelium with high sTβRIII levels.


Sign in / Sign up

Export Citation Format

Share Document