565 A novel long-acting interleukin-7 agonist, NT-I7, increases cytotoxic CD8+ T cells and enhances survival in mouse glioma models

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A599-A599
Author(s):  
Subhajit Ghosh ◽  
Ran Yan ◽  
Sukrutha Thotala ◽  
Arijita Jash ◽  
Anita Mahadevan ◽  
...  

BackgroundRadiation (RT) and temozolomide (TMZ), which are standard of care for patients with glioblastoma (GBM), can cause prolonged severe lymphopenia. Lymphopenia, in turn, is an independent risk factor for shorter survival. Interleukin-7 (IL-7) is a cytokine that is required for T cell homeostasis and proliferation. IL-7 levels are inappropriately low in GBM patients with lymphopenia. NT-I7 (efineptakin alfa) is a long-acting recombinant human IL-7 that supports the proliferation and survival CD4+ and CD8+ cells in both human and mice. We tested whether NT-I7 rescues treatment-induced lymphopenia and improves survival.MethodsImmunocompetent C57BL/6 mice bearing two intracranial glioma models (GL261 and CT2A) were treated with RT (1.8 Gy/day x 5 days), TMZ (33 mg/kg/day x 5 days) and/or NT-I7 (10 mg/kg on the final day of RT completion). We profiled the CD3, CD8, CD4, FOXP3 cells in peripheral blood over time. We also immunoprofiled cervical lymph nodes, bone marrow, thymus, spleen, and the tumor 6 days after NT-I7 treatment. Survival was monitored daily.ResultsMedian survival in mice treated with NT-I7 combined with RT was significantly longer than RT alone (GL261: 40d vs 34d, p<0.0021; CT2A: 90d vs 40d, p<0.0499) or NT-I7 alone (GL261: 40d vs 24d, p<0.008; CT2A: 90d vs 32d, p<0.0154). NT-I7 with RT was just as effective as NT-I7 combined with RT and TMZ in both GL261(40d vs 47d) and CT2A (90d vs 90d). Cytotoxic CD8+ T cells were increased in both peripheral blood (0.66 x 105 to 3.34 x 105; P≤0.0001) and tumor (0.53 x 103 to 1.83 x 103; P≤0.0001) in mice treated with NT-I7 when compared to control. Similarly, NT-I7 in combination with RT increased the CD8+ T cells in peripheral blood (0.658 x 105 to 1.839 x 105 P≤0.0001) when compared to RT alone. There were decreases in tumor infiltrating FOXP3+ T-reg cells in mice treated with NT-I7 (1.9 x 104 to 0.75 x 104 P≤0.0001) and NT-I7 + RT (1.9 x 104 to 0.59 x 104 P≤0.0001) when compared to the control group without NT-I7. In addition, NT- I7 treatment increased CD8+ T cells in thymus, spleen, and lymph nodes.ConclusionsNT-I7 enhances cytotoxic CD8+ T lymphocytes systemically and in the tumor microenvironment, and improves survival. A phase I/II trial to evaluate NT-I7 in patients with high-grade gliomas is ongoing (NCT03687957).

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii89-ii89
Author(s):  
Subhajit Ghosh ◽  
Ran Yan ◽  
Sukrutha Thotala ◽  
Arijita Jash ◽  
Anita Mahadevan ◽  
...  

Abstract BACKGROUND Patients with glioblastoma (GBM) are treated with radiation (RT) and temozolomide (TMZ). These treatments can cause prolonged severe lymphopenia, which is associated with shorter survival. NT-I7 (efineptakin alfa) is a long-acting recombinant human IL-7 that supports the proliferation and survival CD4+ and CD8+ cells in both human and mice. We tested whether NT-I7 would protect T cells from treatment-induced lymphopenia and improve survival. METHODS C57BL/6 mice bearing intracranial tumors (GL261 or CT2A) were treated with RT (1.8 Gy/day x 5 days), TMZ (33 mg/kg/day x 5 days) and/or NT-17 (10 mg/kg on the final day of RT completion). We followed for survival and profiled CD3, CD8, CD4, FOXP3 in peripheral blood over time. In parallel, we assessed cervical lymph nodes, bone marrow, thymus, spleen, and the tumor 6 days after NT-I7 treatment. RESULTS Median survival in mice treated with NT-I7 combined with RT was significantly better than RT alone (GL261: 40d vs 34d, p&lt; 0.0021; CT2A: 90d vs 40d, p&lt; 0.0499) or NT-I7 alone (GL261: 40d vs 24d, p&lt; 0.008; CT2A: 90d vs 32d, p&lt; 0.0154). NT-17 with RT was just as effective as NT-I7 combined with RT and TMZ in both GL261 (40d vs 47d) and CT2A (90d vs 90d). NT-I7 treatment significantly increased the amount of CD8+ cells in the peripheral blood and tumor. NT- I7 rescued CD8+ T cells from RT induced lymphopenia in peripheral blood, spleen, and lymph nodes. NT-I7 alone or NT-I7 in combination with RT increased the CD8+ T cells in peripheral blood and tumor while reducing the FOXP3+ T-reg cells in the tumor microenvironment. CONCLUSIONS NT-I7 protects T-cells from RT induced lymphopenia, improves cytotoxic CD8+ T lymphocytes systemically and in the tumor, and improves survival. Presently, a phase I/II trial to evaluate NT-I7 in patients with high-grade gliomas is ongoing (NCT03687957).


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 2504-2504
Author(s):  
C. Sportes ◽  
F. Hakim ◽  
M. Krumlauf ◽  
R. Babb ◽  
T. Fleisher ◽  
...  

2504 Background: IL-7 has a critical and non-redundant role in T-cell lymphopoiesis and peripheral T-cell homeostasis. IL-7 administration may prove clinically valuable in conditions of disease induced (HIV) or iatrogenic T-cell depletion and for modulation of vaccine immune responses. In the first phase I study in humans, recombinant human interleukin-7 (“CYT 99–007”, Cytheris Inc., Rockville, MD) was administered subcutaneously every other day for two weeks in adults with refractory malignancies at 3, 10, 30 and 60 μg/kg/dose. Biologic activity, defined as a 50% increase over baseline of peripheral blood CD3+ T-cells, was seen at and above the 10μg/kg/dose in all patients. The kinetics of proliferation and expansion of peripheral blood T-cell subsets were analyzed. Methods: Multicolor flow cytometry was performed at baseline, 1, 2 and 3 weeks. Among CD4+ cells, the most naïve were defined as CD45RA+ /CD31+. Among CD4+ & CD8+ cells, the main naïve, memory and effector populations were defined respectively as CD45RA+/CD27+, CD45RA-/CD27+ and CD45RA-/CD27-. Within each subset, the number of cells in cycle was defined by Ki67 staining. Results: Following IL-7 therapy, there was marked proliferation of all T-cells subsets, peaking at week 1, most striking for the naive subsets with 30–70% of circulating cells induced to cycle. Proliferation rates were halved by week 2 despite continuation of treatment, coincident with the observed down-regulation of the IL-7 receptor. Cycling returned to baseline by week 3. Significant proliferation was also induced in effector and memory CD4+ and CD8+ T-cells but to a lesser magnitude, resulting in a greater net expansion of the naïve subsets, still ongoing one week after the end of treatment. Conclusions: IL-7 administration induces marked expansion of naïve, memory and effector CD4+ & CD8+ T-cells in humans. Consistent with the known down-regulation of the IL-7 receptor upon IL-7 exposure, proliferation rates decrease during the second week of treatment. rhIL-7 induced T-cell expansion may prove clinically valuable in adoptive immunotherapy as an adjunct to tumor vaccination and / or immunorestorative agent. [Table: see text]


2022 ◽  
pp. clincanres.0947.2021
Author(s):  
Jian L. Campian ◽  
Subhajit Ghosh ◽  
Vaishali Kapoor ◽  
Ran Yan ◽  
Sukrutha Thotala ◽  
...  

1996 ◽  
Vol 81 (2) ◽  
pp. 200-209 ◽  
Author(s):  
Maurizio Carbonari ◽  
Marina Cibati ◽  
Anna M. Pesce ◽  
Lucia Dell’anna ◽  
Giampiero D'offizi ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3873-3873
Author(s):  
Yangqiu Li ◽  
Qingsong Yin ◽  
Shaohua Chen ◽  
Lijian Yang ◽  
Grzegorz Przybylski ◽  
...  

Abstract Thymic recent output function is characterized its importance of thymus to T-cell diversity in the periphery of both children and adults. The generation of TCR diversity occurs in the thymus through recombination of gene segments encoding the variable parts of the TCR α and β chains. During these processes, by-products of the rearrangements are generated in the form of signal joint T-cell receptor excision circles (sjTRECs), which is considered as a very valuable tool to estimate thymic function. Quantitative of δRec-ψJα sjTRECs can direct evaluate the recent thymic output function, but it is unable to analyze the particular thymic output function of different TCR Vβ subfamily naive T cells. The complexity of TCR Vβ repertoire is an important factor for immune reconstitution, quantitative analysis of series TCR Vβ-Dβ sjTRECs could be used to evaluate the levels of different Vβ subfamily naive T cells. In the present study, quantitative analysis of δRec-ψJα sjTRECs was performed in mononuclear cells, CD3+, CD4+ and CD8+T cells from peripheral blood of normal individuals and cord blood by real-time PCR(TaqMan). And the analysis of 23 TCR Vβ-Dβ1 sjTRECs was performed by semi-nested PCR. Different amounts of DNA (corresponding to 2*105, 5*104, 1*104 and 1*103 cells respectively) from all samples were amplified to estimate the frequency of TCR Vβ-Dβ sjTRECs. The mean value of δRec-ψJα sjTRECs was detected in 4.10±3.65/1000 PBMCs, 6.37±5.28/1000 CD3+cells, 3.28±1.24/1000 CD4+cells, 4.67±3.63/1000 CD8+cells from normal individuals (n=14) and 35.59±47.56/1000 CBMC, 71.48±86.42/1000 CD3+cells, 41.02±32.9/1000 CD4+ cells, 52.05±52.32/1000 CD8+cells from cord blood (n=9) (p=0.0208, p=0.0096, p=0.0003, p=0.0026, respectively). A part of Vβ subfamily sjTRECs could be detected in all samples from cord blood (Vβ2, 3, 4, 5, 10, 13, 14, 15, 19 and 22) and peripheral blood (Vβ10, 13 and 14) at 5*104 cells level, some of Vβ subfamily sjTRECs could be detected in 1*103 cells level. The frequencies of 23 Vβ-Dβ1 sjTRECs were different at the same cellular concentration. The number of detectable Vβ subfamily sjTRECs was 22.00±0.94/2×105, 18.8±1.87/5×104, 10.40±2.99/1×104 and 0.78±1.39/1×103 CBMCs, as compared with 18.70±2.45/2×105 (p=0.002), 13.7±2.67/5×104 (p<0.001), 5.5±2.07/1×104 (p=0.001) and 0.50±0.71/1×103 (p=0.739) in PBMCs from normal individuals. Similar results were found in CD4+ and CD8+ T cells which were sorted from both CBMCs and PBMCs, the number of detectable Vβ subfamily sjTRECs was 13.90±2.38/1×104 CD4+cells, 11.5±1.96/1×104CD8+cells from cord blood and 5.6±2.68/1×104 CD4+cells (p<0.001) and 8.2±2.57/1×104CD8+cells (p>0.005) from normal individuals. The results indicate that the number of detectable sjTRECs of Vβ subfamilies and the frequencies of most Vβ-Dβ1 sjTRECs in normal PBMCs, CD4+ and CD8+T cells were obviously lower than those in cord blood. In conclusions, the results provide the base data of naïve T cells levels and thymic recent output function in cord blood and peripheral blood of normail individuals in chinese.


Author(s):  
Juan Li ◽  
Xiao-fei Sun ◽  
Ying Shen ◽  
Qing Yang ◽  
Shu-yan Dai

<b><i>Objective:</i></b> To investigate the expression of T-cell immunoglobulin and mucin domain 3 (TIM-3) on peripheral T cells of cervical carcinoma patients. <b><i>Methods:</i></b> Peripheral blood samples from 15 high-grade cervical squamous intraepithelial lesion (HSIL) patients, 24 cervical carcinoma patients, and 21 healthy controls were collected. TIM-3 expressions on the surface of peripheral CD4+ T cells and CD8+ T cells were analyzed with flow cytometry. <b><i>Results:</i></b> There was significantly lower expression of CD4+ T cells and CD8+ T cells in HSIL patients and cervical carcinoma patients compared with healthy controls. We also found that TIM-3 expression on peripheral CD4+ T and CD8+ T cells of both HSIL patients and cervical carcinoma patients was significantly increased compared to the control group. Further analyses revealed that the expression of TIM-3 on peripheral CD4+ T and CD8+ T cells significantly increased in stage III–IV cervical carcinoma patients compared to stages I–II. <b><i>Conclusion:</i></b> The increased expression of TIM-3 on CD4+ T cells and CD8+ T cells of patients with cervical carcinoma and HSIL suggests the potential role of TIM-3 in the development and progression of cervical carcinoma, which may be a novel therapy target for cervical carcinoma.


Blood ◽  
2005 ◽  
Vol 106 (3) ◽  
pp. 938-945 ◽  
Author(s):  
Jochen Greiner ◽  
Li Li ◽  
Mark Ringhoffer ◽  
Thomas F. E. Barth ◽  
Krzysztof Giannopoulos ◽  
...  

AbstractThe receptor for hyaluronic acid–mediated motility (RHAMM/CD168) has been described as a leukemia-associated antigen. To define T-cell epitopes of RHAMM/CD168 toward specific immunotherapies for acute myeloid leukemia (AML), 10 potential HLA-A2–binding RHAMM/CD168 peptides (R1 to R10) were synthesized based on computer algorithms and screened by enzyme-linked immunospot (ELISPOT) analysis using CD8+ T cells isolated from peripheral blood (PB) of patients with AML and healthy donors. We found that CD8+ cells from 7 of 13 (54%) patients with AML presensitized with peptides R3 (ILSLELMKL) or R5 (SLEENIVIL) specifically recognized T2 cells pulsed with R3 (39%) or R5 (15%) peptide. In contrast, only 4 of 21 (19%) healthy volunteers had CD8+ cells reactive with R3- or R5-pulsed T2 cells after presensitization. The presence of R3 peptide–specific effector T cells in the peripheral blood of patients with AML could be confirmed by staining as HLA-A2/R3 peptide tetramer+ CCR7-CD45RA+ cells. In chromium-51 release assays, peptide-primed CD8+ T cells from patients with AML were able to lyse RHAMM/CD168 peptide–pulsed T2 cells, AML blasts, and dendritic cells generated thereof (AML DCs). Transfection of COS7 cells with RHAMM/CD168 cDNA revealed that peptides R3 and R5 are naturally processed epitopes of RHAMM/CD168 that are presented in an HLA-A2–restricted manner. In summary, RHAMM/CD168 is a promising target for immunotherapies in patients with AML, and we have therefore initiated a clinical vaccination trial with R3 peptide. Because RHAMM/CD168 is also expressed in various other hematologic malignancies and solid tumors, vaccines targeting this antigen may have even wider application.


Blood ◽  
1993 ◽  
Vol 81 (8) ◽  
pp. 2085-2092 ◽  
Author(s):  
TL Whiteside ◽  
EM Elder ◽  
D Moody ◽  
J Armstrong ◽  
M Ho ◽  
...  

Abstract Cytolytic T lymphocytes play an important role in host defense against viral infections, including human immunodeficiency virus (HIV). In a phase I clinical trial (protocol 080 of the AIDS Clinical Trials Group), generation of CD8+ effector cells from peripheral blood of patients with acquired immunodeficiency syndrome (AIDS)-related complex (ARC) or AIDS and safety of autologous adoptive transfer of these cells were evaluated. For therapeutic infusions, CD8+ T cells were purified by positive selection on anti-CD8 monoclonal antibody-coated flasks from leukapheresed peripheral blood of seven patients. These CD8+ T cells were cultured in the presence of interleukin-2 and phytohemagglutinin for up to 3 weeks to obtain cells sufficient for therapeutic infusions (10(8) to 10(10)). All 31 cell cultures established from the seven patients and used for therapy were highly enriched in CD8+ (mean, 97%), CD8+HLA-DR+ (50%), cytotoxic CD8+CD11b- (82%), and memory CD29+ (78%) T lymphocytes. In vitro expanded CD8+ cells had excellent cytotoxic function at the time they were used for therapy, including HIV-specific activity against autologous targets infected with vaccinia vectors expressing HIV-IIIb antigens, gag, pol, and env. Anti-HIV activity of cultured CD8+ cells was significantly higher than that of autologous fresh peripheral blood lymphocytes. Our results show that CD8+ T lymphocytes obtained from peripheral blood of symptomatic HIV-infected patients can be purified, cultured to obtain large numbers of cells with enhanced anti-HIV activity, and safely infused into patients with AIDS as a form of immunotherapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3026-3026
Author(s):  
Deepa Kolaseri Krishnadas ◽  
Mindy Stamer ◽  
Kim Dunham ◽  
Lei Bao ◽  
Kenneth Lucas

Abstract Abstract 3026 Poster Board II-1002 The Wilms' tumor antigen (WT1) is over-expressed on several human leukemia and solid tumors, and thus is considered as a potential target for cancer immunotherapy. Combating leukemia by targeting WT1 expressing leukemic cells using in vitro generated WT1-specific CTL is one potential approach, but it is difficult to generate an immune response against WT1 due to low T cell precursor frequency in normal healthy individuals. Earlier studies have shown the generation of WT1-A*0201 peptide specific CTL from CD8+ T cells by cloning. Another study reported the production of IFN- γ by WT-1 specific CD8+ T cells. However, the cytolytic killing ability of these IFN- γ producing cells was not further characterized. Here, we demonstrate the generation of WT1-A*0201 specific CTL from the peripheral blood lymphocytes (PBL) of normal healthy donors using CD137 selection. The PBL were stimulated once with RMFPNAPYL (WT1-A*0201 peptide) pulsed autologous dendritic cells and twice with WT1-A*0201 peptide pulsed irradiated peripheral blood mononuclear cells (PBMC). Following three stimulations, the PBL were selected for CD137+ expression and rapidly expanded with OKT3 and IL-2. The WT1-A*0201 specific CTL showed killing of target cells and production of IFN-γ in an antigen-specific manner. The percent killing of WT1-A*0201 peptide pulsed T2 cells (TAP−, HLA- A2+) and autologous B blast (BB) were significantly higher when compared with their control targets. T2 cells and BB either pulsed with an irrelevant A*0201 peptide or un-pulsed served as the control. We have observed similar results with WT1-A*0201 specific CTL generated from normal donor CD8+ cells. However, the efficiency of WT1-A*0201 CTL generated from PBL to kill target cells and produce IFN- γ was higher than CTL from CD8+ cells. The CTL generated from PBL killed BA25, a WT1 expressing A2+ leukemia cell line but failed to kill Molt-4, a WT1 expressing A2− cell line, clearly indicating HLA-A2 restricted CTL activity. The specificity of the generated CTL were further confirmed by staining with WT1-HLA-A*0201 tetramer. The percentage of WT1-specific CD3+CD8+Tetramer+ cells either remained same or higher in CTL generated from PBL when compared with those generated from CD8+ cells. CD137 selection leads to the generation of significant number of CTL in a shorter time when compared to conventional cloning methods. In addition, generation of WT1-A*0201 specific CTL from PBL avoids CD8+ selection. Currently, we are aiming to generate WT1-specific CTL using an overlapping WT1 peptide-mix in order to widen our ability to treat patients with different HLA types. This study has implications for cellular immunotherapy in leukemia patients who relapse following allogeneic stem cell transplantation. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document