scholarly journals 1214: MACHINE LEARNING-BASED EARLY MORTALITY PREDICTION AT THE TIME OF ICU ADMISSION

2021 ◽  
Vol 50 (1) ◽  
pp. 607-607
Author(s):  
Sean McManus ◽  
Reem Almuqati ◽  
Reem Khatib ◽  
Ashish Khanna ◽  
Jacek Cywinski ◽  
...  
Author(s):  
Cong Li ◽  
Zhuo Zhang ◽  
Yazhou Ren ◽  
Hu Nie ◽  
Yuqing Lei ◽  
...  

2020 ◽  
Author(s):  
Robert Chen ◽  
Matthew R Kudelka ◽  
Aaron M Rosado ◽  
James Zhang

ABSTRACTPenile cancer remains a rare cancer with an annual incidence of 1 in 100,000 men in the United States, accounting for 0.4-0.6% of all malignancies. Furthermore, to date there are no predictive models of early mortality in penile cancer. Meanwhile, machine learning has potential to serve as a prognostic tool for patients with advanced disease.We developed a machine learning model for predicting early mortality in penile cancer (survival less than 11 months after initial diagnosis. A cohort of 88 patients with advanced penile cancer was extracted from the Surveillance, Epidemiology and End Results (SEER) program. In the cohort, patients with advanced penile cancer exhibited a median overall survival of 21 months, with the 25th percentile of overall survival being 11 months. We constructed predictive features based on patient demographics, staging, metastasis, lymph node biopsy criteria, and metastatic sites. We trained a multivariate logistic regression model, tuning parameters with respect to regularization, and feature selection criteria.Upon evaluation with 5-fold cross validation, our model achieved 68.2% accuracy with AUC 0.696. Criteria for advanced staging (T4, group stage IV), as well as higher age, white race and squamous cell histology, were the most predictive of early mortality. Tumor size was the strongest negative predictor of early mortality.Our study showcases the first known predictive model for early mortality in patients with advanced penile cancer and should serve as a framework for approaching the clinical problem in future studies. Future work should aim to incorporate other data sources such as genomic and metabolomic data, increase patient counts, incorporate clinical characteristics such as ECOG and RECIST criteria, and assess the performance of the model in a prospective fashion.


2020 ◽  
Author(s):  
Dianbo Liu

BACKGROUND Applications of machine learning (ML) on health care can have a great impact on people’s lives. At the same time, medical data is usually big, requiring a significant amount of computational resources. Although it might not be a problem for wide-adoption of ML tools in developed nations, availability of computational resource can very well be limited in third-world nations and on mobile devices. This can prevent many people from benefiting of the advancement in ML applications for healthcare. OBJECTIVE In this paper we explored three methods to increase computational efficiency of either recurrent neural net-work(RNN) or feedforward (deep) neural network (DNN) while not compromising its accuracy. We used in-patient mortality prediction as our case analysis upon intensive care dataset. METHODS We reduced the size of RNN and DNN by applying pruning of “unused” neurons. Additionally, we modified the RNN structure by adding a hidden-layer to the RNN cell but reduce the total number of recurrent layers to accomplish a reduction of total parameters in the network. Finally, we implemented quantization on DNN—forcing the weights to be 8-bits instead of 32-bits. RESULTS We found that all methods increased implementation efficiency–including training speed, memory size and inference speed–without reducing the accuracy of mortality prediction. CONCLUSIONS This improvements allow the implementation of sophisticated NN algorithms on devices with lower computational resources.


2021 ◽  
Vol 10 (5) ◽  
pp. 992
Author(s):  
Martina Barchitta ◽  
Andrea Maugeri ◽  
Giuliana Favara ◽  
Paolo Marco Riela ◽  
Giovanni Gallo ◽  
...  

Patients in intensive care units (ICUs) were at higher risk of worsen prognosis and mortality. Here, we aimed to evaluate the ability of the Simplified Acute Physiology Score (SAPS II) to predict the risk of 7-day mortality, and to test a machine learning algorithm which combines the SAPS II with additional patients’ characteristics at ICU admission. We used data from the “Italian Nosocomial Infections Surveillance in Intensive Care Units” network. Support Vector Machines (SVM) algorithm was used to classify 3782 patients according to sex, patient’s origin, type of ICU admission, non-surgical treatment for acute coronary disease, surgical intervention, SAPS II, presence of invasive devices, trauma, impaired immunity, antibiotic therapy and onset of HAI. The accuracy of SAPS II for predicting patients who died from those who did not was 69.3%, with an Area Under the Curve (AUC) of 0.678. Using the SVM algorithm, instead, we achieved an accuracy of 83.5% and AUC of 0.896. Notably, SAPS II was the variable that weighted more on the model and its removal resulted in an AUC of 0.653 and an accuracy of 68.4%. Overall, these findings suggest the present SVM model as a useful tool to early predict patients at higher risk of death at ICU admission.


Author(s):  
Pedro Vinícius Staziaki ◽  
Di Wu ◽  
Jesse C. Rayan ◽  
Irene Dixe de Oliveira Santo ◽  
Feng Nan ◽  
...  

Author(s):  
Jeffrey G Klann ◽  
Griffin M Weber ◽  
Hossein Estiri ◽  
Bertrand Moal ◽  
Paul Avillach ◽  
...  

Abstract Introduction The Consortium for Clinical Characterization of COVID-19 by EHR (4CE) is an international collaboration addressing COVID-19 with federated analyses of electronic health record (EHR) data. Objective We sought to develop and validate a computable phenotype for COVID-19 severity. Methods Twelve 4CE sites participated. First we developed an EHR-based severity phenotype consisting of six code classes, and we validated it on patient hospitalization data from the 12 4CE clinical sites against the outcomes of ICU admission and/or death. We also piloted an alternative machine-learning approach and compared selected predictors of severity to the 4CE phenotype at one site. Results The full 4CE severity phenotype had pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of individual code categories for acuity had high variability - up to 0.65 across sites. At one pilot site, the expert-derived phenotype had mean AUC 0.903 (95% CI: 0.886, 0.921), compared to AUC 0.956 (95% CI: 0.952, 0.959) for the machine-learning approach. Billing codes were poor proxies of ICU admission, with as low as 49% precision and recall compared to chart review. Discussion We developed a severity phenotype using 6 code classes that proved resilient to coding variability across international institutions. In contrast, machine-learning approaches may overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold-standard outcomes, possibly due to heterogeneous pandemic conditions. Conclusion We developed an EHR-based severity phenotype for COVID-19 in hospitalized patients and validated it at 12 international sites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bongjin Lee ◽  
Kyunghoon Kim ◽  
Hyejin Hwang ◽  
You Sun Kim ◽  
Eun Hee Chung ◽  
...  

AbstractThe aim of this study was to develop a predictive model of pediatric mortality in the early stages of intensive care unit (ICU) admission using machine learning. Patients less than 18 years old who were admitted to ICUs at four tertiary referral hospitals were enrolled. Three hospitals were designated as the derivation cohort for machine learning model development and internal validation, and the other hospital was designated as the validation cohort for external validation. We developed a random forest (RF) model that predicts pediatric mortality within 72 h of ICU admission, evaluated its performance, and compared it with the Pediatric Index of Mortality 3 (PIM 3). The area under the receiver operating characteristic curve (AUROC) of RF model was 0.942 (95% confidence interval [CI] = 0.912–0.972) in the derivation cohort and 0.906 (95% CI = 0.900–0.912) in the validation cohort. In contrast, the AUROC of PIM 3 was 0.892 (95% CI = 0.878–0.906) in the derivation cohort and 0.845 (95% CI = 0.817–0.873) in the validation cohort. The RF model in our study showed improved predictive performance in terms of both internal and external validation and was superior even when compared to PIM 3.


Sign in / Sign up

Export Citation Format

Share Document