P38 MAP-Kinase Pathway Is Involved in the Production of CLC-3 in Nasal Epithelial Cells With Allergic Rhinitis Induced by Interleukin-4

2006 ◽  
Vol 116 (11) ◽  
pp. 1973-1977 ◽  
Author(s):  
Demin Han ◽  
Bing Zhou ◽  
Lei Cheng ◽  
Yun Oh ◽  
Huabin Li
2015 ◽  
Vol 117 (1) ◽  
pp. 247-258 ◽  
Author(s):  
Yutaka Kondo ◽  
Sayomi Higa-Nakamine ◽  
Noriko Maeda ◽  
Seikichi Toku ◽  
Manabu Kakinohana ◽  
...  

PLoS Genetics ◽  
2016 ◽  
Vol 12 (4) ◽  
pp. e1006010 ◽  
Author(s):  
Serena A. D’Souza ◽  
Luckshi Rajendran ◽  
Rachel Bagg ◽  
Louis Barbier ◽  
Derek M. van Pel ◽  
...  

The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.


Oncogene ◽  
2003 ◽  
Vol 22 (36) ◽  
pp. 5537-5544 ◽  
Author(s):  
Qingyun Xu ◽  
Yutaka Karouji ◽  
Michimoto Kobayashi ◽  
Sayoko Ihara ◽  
Hiroaki Konishi ◽  
...  

2009 ◽  
pp. 1-13 ◽  
Author(s):  
Disha Dumka ◽  
Poonam Puri ◽  
Nathalie Carayol ◽  
Crystal Lumby ◽  
Harikrishnan Balachandran ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0178769 ◽  
Author(s):  
Tsuyoshi Uchiyama ◽  
Fumikazu Okajima ◽  
Chihiro Mogi ◽  
Ayaka Tobo ◽  
Shoichi Tomono ◽  
...  

2010 ◽  
Vol 78 (5) ◽  
pp. 2153-2162 ◽  
Author(s):  
Mohamed Hafez ◽  
Kelly Hayes ◽  
Marie Goldrick ◽  
Richard K. Grencis ◽  
Ian S. Roberts

ABSTRACT Escherichia coli strain Nissle 1917, which has been widely used as a probiotic for the treatment of inflammatory bowel disorders, expresses a K5 capsule, the expression of which is often associated with extraintestinal and urinary tract isolates of E. coli. Previously, it had been shown that the expression of a K5 capsule by Nissle 1917 was important in mediating interactions with epithelial cells and the extent of chemokine expression. In this paper, we show that infection with Nissle 1917 induces expression of Toll-like receptor 4 (TLR4) and TLR5 in Caco-2 cells and that maximal induction of TLR5 required the K5 capsule. In addition, purified K5 polysaccharide was capable of inducing expression of TLR5 and mCD14 and potentiated the activity of both TLR4 and TLR5 agonists to increase the proinflammatory response. Infection with Nissle 1917 also increased the expression of the adaptor molecules MyD88 and TRIF, which was K5 capsule dependent. By Western blot analysis, it was possible to show that induction of interleukin-8 by Nissle 1917 was predominantly through the mitogen-activated protein (MAP) kinase pathway and that expression of the K5 capsule was important for activation of the MAP kinase pathway. This paper provides new information on the function of the K5 capsule in mediating interactions between Nissle 1917 and epithelial cells and the mechanisms that underlie the probiotic properties of Nissle 1917.


Sign in / Sign up

Export Citation Format

Share Document