Hurricane Sandy

2012 ◽  
Vol 5 (12) ◽  
pp. 8-11 ◽  
Author(s):  
Heather Lindsey
Keyword(s):  
2012 ◽  
Vol 40 (12) ◽  
pp. 4 ◽  
Author(s):  
ROBERT T. LONDON
Keyword(s):  

Data Series ◽  
10.3133/ds888 ◽  
2014 ◽  
Author(s):  
C. Wayne Wright ◽  
Christine J. Kranenburg ◽  
Emily S. Klipp ◽  
Rodolfo J. Troche ◽  
Xan Fredericks ◽  
...  

Data Series ◽  
10.3133/ds887 ◽  
2014 ◽  
Author(s):  
C. Wayne Wright ◽  
Rodolfo J. Troche ◽  
Christine J. Kranenburg ◽  
Emily S. Klipp ◽  
Xan Fredericks ◽  
...  

Data Series ◽  
10.3133/ds767 ◽  
2014 ◽  
Author(s):  
C. Wayne Wright ◽  
Xan Fredericks ◽  
Rodolfo J. Troche ◽  
Emily S. Klipp ◽  
Christine J. Kranenburg ◽  
...  

Shore & Beach ◽  
2019 ◽  
pp. 29-35
Author(s):  
Michele Strazzella ◽  
Nobuhisa Kobayashu ◽  
Tingting Zhu

A simple approach based on an analytical model and available tide gauge data is proposed for the analysis of storm tide damping inside inland bays with complex bathymetry and for the prediction of peak water levels at gauge locations during storms. The approach was applied to eight tide gauges in the vicinity of inland bays in Delaware. Peak water levels at the gauge locations were analyzed for 34 storms during 2005-2017. A damping parameter in the analytical model was calibrated for each bay gauge. The calibrated model predicted the peak water levels within errors of about 0.2 m except for Hurricane Sandy in 2012. The analytical model including wave overtopping was used to estimate the peak wave overtopping rate over the barrier beach from the measured peak water level in the adjacent bay.


2019 ◽  
Vol 9 (6) ◽  
pp. 1128 ◽  
Author(s):  
Yundong Li ◽  
Wei Hu ◽  
Han Dong ◽  
Xueyan Zhang

Using aerial cameras, satellite remote sensing or unmanned aerial vehicles (UAV) equipped with cameras can facilitate search and rescue tasks after disasters. The traditional manual interpretation of huge aerial images is inefficient and could be replaced by machine learning-based methods combined with image processing techniques. Given the development of machine learning, researchers find that convolutional neural networks can effectively extract features from images. Some target detection methods based on deep learning, such as the single-shot multibox detector (SSD) algorithm, can achieve better results than traditional methods. However, the impressive performance of machine learning-based methods results from the numerous labeled samples. Given the complexity of post-disaster scenarios, obtaining many samples in the aftermath of disasters is difficult. To address this issue, a damaged building assessment method using SSD with pretraining and data augmentation is proposed in the current study and highlights the following aspects. (1) Objects can be detected and classified into undamaged buildings, damaged buildings, and ruins. (2) A convolution auto-encoder (CAE) that consists of VGG16 is constructed and trained using unlabeled post-disaster images. As a transfer learning strategy, the weights of the SSD model are initialized using the weights of the CAE counterpart. (3) Data augmentation strategies, such as image mirroring, rotation, Gaussian blur, and Gaussian noise processing, are utilized to augment the training data set. As a case study, aerial images of Hurricane Sandy in 2012 were maximized to validate the proposed method’s effectiveness. Experiments show that the pretraining strategy can improve of 10% in terms of overall accuracy compared with the SSD trained from scratch. These experiments also demonstrate that using data augmentation strategies can improve mAP and mF1 by 72% and 20%, respectively. Finally, the experiment is further verified by another dataset of Hurricane Irma, and it is concluded that the paper method is feasible.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


Sign in / Sign up

Export Citation Format

Share Document