scholarly journals Building Damage Detection from Post-Event Aerial Imagery Using Single Shot Multibox Detector

2019 ◽  
Vol 9 (6) ◽  
pp. 1128 ◽  
Author(s):  
Yundong Li ◽  
Wei Hu ◽  
Han Dong ◽  
Xueyan Zhang

Using aerial cameras, satellite remote sensing or unmanned aerial vehicles (UAV) equipped with cameras can facilitate search and rescue tasks after disasters. The traditional manual interpretation of huge aerial images is inefficient and could be replaced by machine learning-based methods combined with image processing techniques. Given the development of machine learning, researchers find that convolutional neural networks can effectively extract features from images. Some target detection methods based on deep learning, such as the single-shot multibox detector (SSD) algorithm, can achieve better results than traditional methods. However, the impressive performance of machine learning-based methods results from the numerous labeled samples. Given the complexity of post-disaster scenarios, obtaining many samples in the aftermath of disasters is difficult. To address this issue, a damaged building assessment method using SSD with pretraining and data augmentation is proposed in the current study and highlights the following aspects. (1) Objects can be detected and classified into undamaged buildings, damaged buildings, and ruins. (2) A convolution auto-encoder (CAE) that consists of VGG16 is constructed and trained using unlabeled post-disaster images. As a transfer learning strategy, the weights of the SSD model are initialized using the weights of the CAE counterpart. (3) Data augmentation strategies, such as image mirroring, rotation, Gaussian blur, and Gaussian noise processing, are utilized to augment the training data set. As a case study, aerial images of Hurricane Sandy in 2012 were maximized to validate the proposed method’s effectiveness. Experiments show that the pretraining strategy can improve of 10% in terms of overall accuracy compared with the SSD trained from scratch. These experiments also demonstrate that using data augmentation strategies can improve mAP and mF1 by 72% and 20%, respectively. Finally, the experiment is further verified by another dataset of Hurricane Irma, and it is concluded that the paper method is feasible.

Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 104 ◽  
Author(s):  
Ahmed ◽  
Yigit ◽  
Isik ◽  
Alpkocak

Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia. This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood cell images using convolutional neural networks (CNN), which requires a large training data set. Therefore, we also investigated the effects of data augmentation for an increasing number of training samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH Image Bank. Next, we applied seven different image transformation techniques as data augmentation. We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also explored other well-known machine learning algorithms such as naive Bayes, support vector machine, k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multiclass classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better performance than other wellknown machine learning algorithms.


2021 ◽  
Vol 10 (2) ◽  
pp. 233-245
Author(s):  
Tanja Dorst ◽  
Yannick Robin ◽  
Sascha Eichstädt ◽  
Andreas Schütze ◽  
Tizian Schneider

Abstract. Process sensor data allow for not only the control of industrial processes but also an assessment of plant conditions to detect fault conditions and wear by using sensor fusion and machine learning (ML). A fundamental problem is the data quality, which is limited, inter alia, by time synchronization problems. To examine the influence of time synchronization within a distributed sensor system on the prediction performance, a test bed for end-of-line tests, lifetime prediction, and condition monitoring of electromechanical cylinders is considered. The test bed drives the cylinder in a periodic cycle at maximum load, a 1 s period at constant drive speed is used to predict the remaining useful lifetime (RUL). The various sensors for vibration, force, etc. integrated into the test bed are sampled at rates between 10 kHz and 1 MHz. The sensor data are used to train a classification ML model to predict the RUL with a resolution of 1 % based on feature extraction, feature selection, and linear discriminant analysis (LDA) projection. In this contribution, artificial time shifts of up to 50 ms between individual sensors' cycles are introduced, and their influence on the performance of the RUL prediction is investigated. While the ML model achieves good results if no time shifts are introduced, we observed that applying the model trained with unmodified data only to data sets with time shifts results in very poor performance of the RUL prediction even for small time shifts of 0.1 ms. To achieve an acceptable performance also for time-shifted data and thus achieve a more robust model for application, different approaches were investigated. One approach is based on a modified feature extraction approach excluding the phase values after Fourier transformation; a second is based on extending the training data set by including artificially time-shifted data. This latter approach is thus similar to data augmentation used to improve training of neural networks.


2021 ◽  
Vol 11 (9) ◽  
pp. 3776
Author(s):  
Luis Enciso-Salas ◽  
Gustavo Pérez-Zuñiga ◽  
Javier Sotomayor-Moriano

Implementation of model-based fault diagnosis systems can be a difficult task due to the complex dynamics of most systems, an appealing alternative to avoiding modeling is to use machine learning-based techniques for which the implementation is more affordable nowadays. However, the latter approach often requires extensive data processing. In this paper, a hybrid approach using recent developments in neural ordinary differential equations is proposed. This approach enables us to combine a natural deep learning technique with an estimated model of the system, making the training simpler and more efficient. For evaluation of this methodology, a nonlinear benchmark system is used by simulation of faults in actuators, sensors, and process. Simulation results show that the proposed methodology requires less processing for the training in comparison with conventional machine learning approaches since the data-set is directly taken from the measurements and inputs. Furthermore, since the model used in the essay is only a structural approximation of the plant; no advanced modeling is required. This approach can also alleviate some pitfalls of training data-series, such as complicated data augmentation methodologies and the necessity for big amounts of data.


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1285
Author(s):  
Mohammed Al-Sarem ◽  
Faisal Saeed ◽  
Zeyad Ghaleb Al-Mekhlafi ◽  
Badiea Abdulkarem Mohammed ◽  
Tawfik Al-Hadhrami ◽  
...  

Security attacks on legitimate websites to steal users’ information, known as phishing attacks, have been increasing. This kind of attack does not just affect individuals’ or organisations’ websites. Although several detection methods for phishing websites have been proposed using machine learning, deep learning, and other approaches, their detection accuracy still needs to be enhanced. This paper proposes an optimized stacking ensemble method for phishing website detection. The optimisation was carried out using a genetic algorithm (GA) to tune the parameters of several ensemble machine learning methods, including random forests, AdaBoost, XGBoost, Bagging, GradientBoost, and LightGBM. The optimized classifiers were then ranked, and the best three models were chosen as base classifiers of a stacking ensemble method. The experiments were conducted on three phishing website datasets that consisted of both phishing websites and legitimate websites—the Phishing Websites Data Set from UCI (Dataset 1); Phishing Dataset for Machine Learning from Mendeley (Dataset 2, and Datasets for Phishing Websites Detection from Mendeley (Dataset 3). The experimental results showed an improvement using the optimized stacking ensemble method, where the detection accuracy reached 97.16%, 98.58%, and 97.39% for Dataset 1, Dataset 2, and Dataset 3, respectively.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Huu-Thanh Duong ◽  
Tram-Anh Nguyen-Thi

AbstractIn literature, the machine learning-based studies of sentiment analysis are usually supervised learning which must have pre-labeled datasets to be large enough in certain domains. Obviously, this task is tedious, expensive and time-consuming to build, and hard to handle unseen data. This paper has approached semi-supervised learning for Vietnamese sentiment analysis which has limited datasets. We have summarized many preprocessing techniques which were performed to clean and normalize data, negation handling, intensification handling to improve the performances. Moreover, data augmentation techniques, which generate new data from the original data to enrich training data without user intervention, have also been presented. In experiments, we have performed various aspects and obtained competitive results which may motivate the next propositions.


Author(s):  
Chao Feng ◽  
Jie Xiong ◽  
Liqiong Chang ◽  
Fuwei Wang ◽  
Ju Wang ◽  
...  

Person identification plays a critical role in a large range of applications. Recently, RF based person identification becomes a hot research topic due to the contact-free nature of RF sensing that is particularly appealing in current COVID-19 pandemic. However, existing systems still have multiple limitations: i) heavily rely on the gait patterns of users for identification; ii) require a large amount of data to train the model and also extensive retraining for new users and iii) require a large frequency bandwidth which is not available on most commodity RF devices for static person identification. This paper proposes RF-Identity, an RFID-based identification system to address the above limitations and the contribution is threefold. First, by integrating walking pattern features with unique body shape features (e.g., height), RF-Identity achieves a high accuracy in person identification. Second, RF-Identity develops a data augmentation scheme to expand the size of the training data set, thus reducing the human effort in data collection. Third, RF-Identity utilizes the tag diversity in spatial domain to identify static users without a need of large frequency bandwidth. Extensive experiments show an identification accuracy of 94.2% and 95.9% for 50 dynamic and static users, respectively.


2021 ◽  
Author(s):  
Eva van der Kooij ◽  
Marc Schleiss ◽  
Riccardo Taormina ◽  
Francesco Fioranelli ◽  
Dorien Lugt ◽  
...  

<p>Accurate short-term forecasts, also known as nowcasts, of heavy precipitation are desirable for creating early warning systems for extreme weather and its consequences, e.g. urban flooding. In this research, we explore the use of machine learning for short-term prediction of heavy rainfall showers in the Netherlands.</p><p>We assess the performance of a recurrent, convolutional neural network (TrajGRU) with lead times of 0 to 2 hours. The network is trained on a 13-year archive of radar images with 5-min temporal and 1-km spatial resolution from the precipitation radars of the Royal Netherlands Meteorological Institute (KNMI). We aim to train the model to predict the formation and dissipation of dynamic, heavy, localized rain events, a task for which traditional Lagrangian nowcasting methods still come up short.</p><p>We report on different ways to optimize predictive performance for heavy rainfall intensities through several experiments. The large dataset available provides many possible configurations for training. To focus on heavy rainfall intensities, we use different subsets of this dataset through using different conditions for event selection and varying the ratio of light and heavy precipitation events present in the training data set and change the loss function used to train the model.</p><p>To assess the performance of the model, we compare our method to current state-of-the-art Lagrangian nowcasting system from the pySTEPS library, like S-PROG, a deterministic approximation of an ensemble mean forecast. The results of the experiments are used to discuss the pros and cons of machine-learning based methods for precipitation nowcasting and possible ways to further increase performance.</p>


2021 ◽  
Vol 263 (2) ◽  
pp. 4558-4564
Author(s):  
Minghong Zhang ◽  
Xinwei Luo

Underwater acoustic target recognition is an important aspect of underwater acoustic research. In recent years, machine learning has been developed continuously, which is widely and effectively applied in underwater acoustic target recognition. In order to acquire good recognition results and reduce the problem of overfitting, Adequate data sets are essential. However, underwater acoustic samples are relatively rare, which has a certain impact on recognition accuracy. In this paper, in addition of the traditional audio data augmentation method, a new method of data augmentation using generative adversarial network is proposed, which uses generator and discriminator to learn the characteristics of underwater acoustic samples, so as to generate reliable underwater acoustic signals to expand the training data set. The expanded data set is input into the deep neural network, and the transfer learning method is applied to further reduce the impact caused by small samples by fixing part of the pre-trained parameters. The experimental results show that the recognition result of this method is better than the general underwater acoustic recognition method, and the effectiveness of this method is verified.


Author(s):  
Yanxiang Yu ◽  
◽  
Chicheng Xu ◽  
Siddharth Misra ◽  
Weichang Li ◽  
...  

Compressional and shear sonic traveltime logs (DTC and DTS, respectively) are crucial for subsurface characterization and seismic-well tie. However, these two logs are often missing or incomplete in many oil and gas wells. Therefore, many petrophysical and geophysical workflows include sonic log synthetization or pseudo-log generation based on multivariate regression or rock physics relations. Started on March 1, 2020, and concluded on May 7, 2020, the SPWLA PDDA SIG hosted a contest aiming to predict the DTC and DTS logs from seven “easy-to-acquire” conventional logs using machine-learning methods (GitHub, 2020). In the contest, a total number of 20,525 data points with half-foot resolution from three wells was collected to train regression models using machine-learning techniques. Each data point had seven features, consisting of the conventional “easy-to-acquire” logs: caliper, neutron porosity, gamma ray (GR), deep resistivity, medium resistivity, photoelectric factor, and bulk density, respectively, as well as two sonic logs (DTC and DTS) as the target. The separate data set of 11,089 samples from a fourth well was then used as the blind test data set. The prediction performance of the model was evaluated using root mean square error (RMSE) as the metric, shown in the equation below: RMSE=sqrt(1/2*1/m* [∑_(i=1)^m▒〖(〖DTC〗_pred^i-〖DTC〗_true^i)〗^2 + 〖(〖DTS〗_pred^i-〖DTS〗_true^i)〗^2 ] In the benchmark model, (Yu et al., 2020), we used a Random Forest regressor and conducted minimal preprocessing to the training data set; an RMSE score of 17.93 was achieved on the test data set. The top five models from the contest, on average, beat the performance of our benchmark model by 27% in the RMSE score. In the paper, we will review these five solutions, including preprocess techniques and different machine-learning models, including neural network, long short-term memory (LSTM), and ensemble trees. We found that data cleaning and clustering were critical for improving the performance in all models.


Sign in / Sign up

Export Citation Format

Share Document