PRESCRIBED FIRE EFFECTS ON FOREST FLOOR AND SOIL NUTRIENTS IN A SIERRA NEVADA FOREST

Soil Science ◽  
2006 ◽  
Vol 171 (3) ◽  
pp. 181-199 ◽  
Author(s):  
J. D. Murphy ◽  
D. W. Johnson ◽  
Watkins W. Miller ◽  
Roger F. Walker ◽  
Robert R. Blank
2006 ◽  
Vol 23 (2) ◽  
pp. 99-115 ◽  
Author(s):  
R. F. Walker ◽  
R. M. Fecko ◽  
W. B. Frederick ◽  
J. D. Murphy ◽  
D. W. Johnson ◽  
...  

2012 ◽  
Vol 124 (1) ◽  
pp. 30
Author(s):  
Kevin G. Tolhurst

The Wombat Fire Effects Study was established to address a number of questions in relation to the effects of repeated low-intensity fires in mixed species eucalypt forest in the foothills of Victoria. This study has now been going for 25 years and has included the study of understorey plants, fuels, bats, terrestrial mammals, reptiles, invertebrates, fungi, birds, soils, tree growth, fire behaviour and weather. This forest system has shown a high resilience to fire that is attributed here to the patchiness and variability in the fire characteristics within a fire and the relatively small proportion of the landscape being affected. A means of comparing the level of “injury” caused by low-intensity prescribed fire with high intensity wildfire is proposed so that the debate about leverage benefits (the reduction in wildfire area compared to the area of planned burning) can be more rational. There are some significant implications for assessing the relative environmental impacts of wildfire compared with the planned burning program being implemented in Victoria since the Victorian Bushfires Royal Commission recommendations (Teague et al. 2010).


Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 181
Author(s):  
John R. Butnor ◽  
Kurt H. Johnsen ◽  
Christopher A. Maier ◽  
C. Dana Nelson

Prescribed fire is an essential tool that is widely used for longleaf pine (Pinus palustris Mill.) stand management; periodic burning serves to reduce competition from woody shrubs and fire-intolerant trees and enhance herbaceous diversity. Low-intensity, prescribed burning is thought to have minimal long-term impact on soil chemistry in southern pine forests, although few studies report the intra-annual variation in soil chemistry after burning. We monitored changes in C, N, oxidation resistant C (CR), pH and elemental nutrients in the forest floor and soil (0–5, 5–10 cm depths) before and after burning (1, 3, 6, 12 months) in a mature longleaf pine plantation at the Harrison Experimental Forest, near Saucier, Mississippi. Prescribed fire consumed much of the forest floor (11.3 Mg ha−1; −69%), increased soil pH and caused a pulse of C, N and elemental nutrients to flow to the near surface soils. In the initial one to three months post-burn coinciding with the start of the growing season, retention of nutrients by soil peaked. Most of the N (93%), Ca (88%), K (96%) and Mg (101%), roughly half of the P (48%) and Mn (52%) and 25% of the C lost from the forest floor were detected in the soil and apparently not lost to volatilization. By month 12, soil C and N pools were not different at depths of 0–5 cm but declined significantly below pre-burn levels at depths of 5–10 cm, C −36% (p < 0.0001), N −26% (p = 0.003), contrary to other examples in southern pine ecosystems. In the upper 5 cm of soil, only Cu (−49%) remained significantly lower than pre-burn contents by month 12, at depths of 5–10 cm, Cu (−76%), Fe (−22%), K (−51%), Mg (−57%), Mn (−82%) and P (−52%) remain lower at month 12 than pre-burn contents. Burning did not increase soil CR content, conversely significant declines in CR occurred. It appears that recovery of soil C and N pools post-burn will require more time on this site than other southern pine forests.


1998 ◽  
Vol 22 (3) ◽  
pp. 138-142 ◽  
Author(s):  
T.A. Barnes ◽  
D.H. Van Lear

Abstract Fire treatments were initiated in 1990 to evaluate effects of low-intensity prescribed fires on composition and structure of the advanced regeneration pool under mature mixed-hardwood stands on upland sites in the Piedmont of South Carolina. One spring burn was as effective as three winter burns in reducing midstory density, considered a prerequisite for subsequent development of oak (Quercus spp.) advanced regeneration. Burning increased the number of oak rootstocks, reduced the relative position of competing species, and increased root-to-shoot ratios of oak stems in the regeneration layer. These favorable effects of fire on oak regeneration outweigh the removal of small, poorly formed oak stems from the midstory/understory strata during burning. Prescribed burning in hardwood forests may solve some of the current oak regeneration problems, especially on better upland sites in the South. South. J. Appl. For. 22(3):138-142.


Sign in / Sign up

Export Citation Format

Share Document