Preclinical Pharmacology of CW002

2016 ◽  
Vol 125 (4) ◽  
pp. 732-743 ◽  
Author(s):  
Hiroshi Sunaga ◽  
John J. Savarese ◽  
Jeff D. McGilvra ◽  
Paul M. Heerdt ◽  
Matthew R. Belmont ◽  
...  

Abstract Background CW002, a novel nondepolarizing neuromuscular blocking agent of intermediate duration, is degraded in vitro by l-cysteine; CW002-induced neuromuscular blockade (NMB) is antagonized in vivo by exogenous l-cysteine.1 Further, Institutional Animal Care and Use Committee–approved studies of safety and efficacy in eight anesthetized monkeys and six cats are described. Methods Mean arterial pressure, heart rate, twitch, and train-of-four were recorded; estimated dose producing 95% twitch inhibition (ED95) for NMB and twitch recovery intervals from 5 to 95% of baseline were derived. Antagonism of 99 to 100% block in monkeys by l-cysteine (50 mg/kg) was tested after bolus doses of approximately 3.75 to 20 × ED95 and after infusions. Vagal and sympathetic autonomic responses were recorded in cats. Dose ratios for [circulatory (ED20) or autonomic (ED50) changes/ED95 (NMB)] were calculated. Results ED95s of CW002 in monkeys and cats were 0.040 and 0.035 mg/kg; l-cysteine readily antagonized block in monkeys: 5 to 95% twitch recovery intervals were shortened to 1.8 to 3.6 min after 3.75 to 10 × ED95 or infusions versus 11.5 to 13.5 min during spontaneous recovery. ED for 20% decrease of mean arterial pressure (n = 27) was 1.06 mg/kg in monkeys; ED for 20% increase of HR (n = 27) was 2.16 mg/kg. ED50s for vagal and sympathetic inhibition in cats were 0.59 and >>0.80 mg/kg (n = 14 and 15). Dose ratios for [circulatory or autonomic changes/ED95 (NMB)] were all more than 15 × ED95. Conclusions The data further verify the neuromuscular blocking properties of CW002, including rapid reversal by l-cysteine of 100% NMB under several circumstances. A notable lack of autonomic or circulatory effects provided added proof of safety and efficacy.

2018 ◽  
Vol 129 (5) ◽  
pp. 970-988 ◽  
Author(s):  
John J. Savarese ◽  
Hiroshi Sunaga ◽  
Jeff D. McGilvra ◽  
Matthew R. Belmont ◽  
Matthew T. Murrell ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Structure–activity studies were performed to identify a new neuromuscular blocking agent retaining the ultra-short acting characteristics of gantacurium, including degradation and reversal by l-cysteine, but lacking its histaminoid properties in man. CW 1759-50 has emerged from this program. Methods Adduction of CW 1759-50 with l-cysteine was studied by high-performance liquid chromatography and mass spectrometry. Institutional Animal Care and Use Committee–approved comparisons of CW 1759-50 to gantacurium were performed in rhesus monkeys. ED95 for neuromuscular blockade was established. Spontaneous recovery was compared to reversal by l-cysteine in paired studies of boluses or infusions. In addition, changes in mean arterial pressure and heart rate after very large doses of 15 to 60 × ED95 were compared. Results The half-time of adduction of l-cysteine to CW 1759-50 in vitro was 2.3 min. The ED95 of CW 1759-50 was 0.069 ± 0.02 mg/kg; ED95 of gantacurium was 0.081 ± 0.05 mg/kg (P = 0.006). Duration of action (recovery to 95% twitch height after 98 to 99% blockade) was as follows: CW 1759-50, 8.2 ± 1.5 min; and gantacurium, 7.4 ± 1.9 min; (n = 8 and 9, P = 0.355). Administration of l-cysteine (30 mg/kg) shortened recovery (i.e., induced reversal) from CW 1759-50 after boluses or infusions (P always less than 0.0001). Recovery intervals (5 to 95% twitch) ranged from 6.1 to 6.7 min (and did not differ significantly) after boluses of 0.10 to 0.50 mg/kg, as well as control infusions (P = 0.426 by analysis of variance). Dose ratios comparing changes of 30% in mean arterial pressure or heart rate to ED95 for neuromuscular blockade (ED 30% Δ [mean arterial pressure or heart rate]/ED95) were higher for CW 1759-50 than for gantacurium. Conclusions CW 1759-50, similar to gantacurium, is an ultra-short acting neuromuscular blocking agent, antagonized by l-cysteine, in the monkey. The circulatory effects, however, are much reduced in comparison with gantacurium, suggesting a trial in humans.


1994 ◽  
Vol 266 (6) ◽  
pp. H2535-H2541 ◽  
Author(s):  
P. Wang ◽  
Z. F. Ba ◽  
I. H. Chaudry

Although depressed endothelium-dependent relaxation occurs during early sepsis, the precise mechanism responsible for this remains unknown. Because the elevated levels of plasma tumor necrosis factor (TNF) play a major role in the pathophysiology of sepsis, we investigated whether TNF-alpha administration alters endothelium-dependent relaxation. To study this, recombinant TNF-alpha (1.2 x 10(7) U/mg) was infused intravenously (0.25 mg/kg body wt) for 0.5 h in normal rats, and mean arterial pressure was monitored. At 1 h after the completion of TNF-alpha or vehicle infusion, the aorta and a pulmonary artery were isolated, cut into 2.5-mm rings, and placed in organ chambers. Norepinephrine (2 x 10(-7) M) was applied to achieve near-maximal contraction, and dose responses for an endothelium-dependent vasodilator, acetylcholine, and an endothelium-independent vasodilator, nitroglycerine, were determined. In additional studies, aortic rings from normal animals were incubated with TNF-alpha for 2 h in vitro, and vascular reactivity was determined. The results indicate that TNF-alpha administration significantly reduced acetylcholine-induced vascular relaxation both in vivo and in vitro. Such a reduction was sustained at least 80 min after the completion of 2-h incubation with TNF-alpha. In contrast, TNF did not alter nitroglycerine-induced vascular relaxation. Thus TNF-alpha depresses endothelium-dependent relaxation in vitro as well as in vivo. Because TNF-alpha infusion increases plasma TNF levels without decreasing mean arterial pressure, the depressed endothelium-dependent relaxation observed during early sepsis may be due to the elevated circulating levels of TNF.


1999 ◽  
Vol 277 (1) ◽  
pp. F58-F65 ◽  
Author(s):  
David H. Warden ◽  
Anthony J. Croatt ◽  
Zvonimir S. Katusic ◽  
Karl A. Nath

In the glycerol model of renal injury we describe an acute rise in systemic arterial pressure which is attended by a reduced vasodilatory response to acetylcholine in vivo; vasodilatory responses to verapamil, however, were not impaired. Neither arginine nor sodium nitroprusside diminished this rise in blood pressure; N ω-nitro-l-arginine methyl ester (l-NAME) elevated basal mean arterial pressure and markedly blunted the rise in mean arterial pressure following the administration of glycerol. Aortic rings from the glycerol-treated rat demonstrate an impaired vasodilatory response to acetylcholine, an effect not repaired by arginine; the vasodilatory responses to nitric oxide donors, sodium nitroprusside and SIN-1, were also impaired; 8-bromo-cGMP, at higher doses, evinced a vasodilatory response comparable to that observed in the control rings. This pattern of responses was not a nonspecific effect of aortic injury, since aortic rings treated with mercuric chloride, a potent oxidant, displayed an impaired vasodilatory response to acetylcholine but not to sodium nitroprusside. We conclude that in the glycerol model of heme protein-induced tissue injury, there is an acute elevation in mean arterial pressure attended by impaired endothelium-dependent vasodilatation in vitro and in vivo. We suggest that the acute scavenging of nitric oxide by heme proteins depletes the blood vessel wall of its endogenous vasodilator and permeation of heme proteins into the blood vessel wall may contribute to such sustained effects as observed in vitro.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3185-3185
Author(s):  
David R. Archer ◽  
Shawn Elms ◽  
Joshua Boutwell ◽  
Jennifer Perry ◽  
Roy Sutliff

Abstract Clinically, pulmonary hypertension is a major risk factor for mortality in adults with sickle cell disease. Contributing factors probably include red cell hemolysis and vaso-occlusive injury with their associated oxidative and inflammatory stimuli. Previously, we have described RBC hemolysis and endothelial oxidative stress in the Berkeley sickle mouse model and extend those studies in this work to investigate cardiovascular and endothelial dysfunction. Eight to ten month old homozygous and hemizygous Berkeley sickle mice and C57BL/6 control mice were used for all aspects of these experiments. In vivo measurements of mean arterial pressure and right ventricular pressures were conducted in fully anesthetized mice using a pressure transducer inserted in the carotid and right ventricle respectively. Following in vivo readings hearts were excised for measurement of ventricular mass. The ascending aorta was removed and cut into 5 mm rings for in vitro studies of agonist- induced contractility and relaxation. The mean arterial pressure of the hemizygous sickle mice (70.6 ± 3.4) was significantly lower than the control mice (86.0 ± 3.1) and the mean arterial pressure of homozygous sickle mice (59.0 ± 2.2 mmHg) was significantly lower than the hemizygous and control mice (p≤0.05 and p≤0.001, respectively). The right ventricular pressure showed a trend that approached significance (p= 0.08) such that pressures in homozygous mice were ≥ than those in hemizygous which were ≥ than those in control mice. Increased basal cardiac output was suggested by significant left ventricular hypertrophy. In vitro examination of potassium chloride activation of voltage gated calcium channels showed no significant difference in sensitivity or maximal contraction. Similarly, there was no difference in sensitivity to the α1 agonist, phenylephrine. However, both hemi- and homozygous mice showed a significant reduction in maximal force of contraction (normalized to cross sectional area when compared to controls. Maximal acetylcholine induced relaxation of aortic rings was significantly reduced (p≤0.05) in homozygous sickle mice compared to controls. The same effect was not seen with sodium nitroprusside induced relaxation indicating that the acetylcholine effect was not due to effects on the smooth muscle but was endothelium-dependent. The Berkeley mouse model shows cardiac hypertrophy consistent with the increased cardiac output associated with chronic anemia and a reduced basal mean arterial blood pressure similar to that seen in humans. 8–10 month old mice have increased right ventricular pressure and RV mass indicative of pulmonary hypertension. Further endothelial dysfunction is characterized by a reduction in the maximal relaxation elicited by acetylcholine. Therefore, the Berkeley mouse is a good model for investigating sickle related endothelial dysfunction.


1988 ◽  
Vol 254 (5) ◽  
pp. H1017-H1022 ◽  
Author(s):  
M. B. Grisham ◽  
J. Everse ◽  
H. F. Janssen

There is a growing body of data to suggest that marginated granulocytes mediate much of the pulmonary damage observed during endotoxemia. The mechanism(s) by which endotoxemia initiates neutrophil margination and cytotoxicity remain either controversial or unknown. The objectives of this study were 1) to determine the temporal relationship between endotoxin-induced decreases in mean arterial pressure and circulating neutrophils, 2) to monitor neutrophil activation in vivo by measuring myeloperoxidase (MPO) activity in the plasma and lymph, and 3) to assess the interaction between endotoxin and complement in activation of neutrophilic oxidative metabolism in vitro. We found that a bolus injection of endotoxin causes a concurrent decrease in both mean arterial pressure and circulating neutrophils at 2 min postinfusion. Blood pressure recovered to approximately 70% of control values by 180 min, whereas circulating neutrophils remain depressed at 20% of control values for the entire experimental period. Using MPO as a marker for neutrophil activation, we found that infusion of endotoxin produces a dramatic increase in plasma and lymph MPO activity, suggesting activation of neutrophilic metabolism in vivo. In vitro data showed that both endotoxin and plasma were required for optimal neutrophilic degranulation and superoxide formation. We conclude that 1) the appearance of MPO in the plasma (or lymph) may be a useful neutrophil marker for neutrophil activation in vivo and may prove useful in following the course of neutrophil-mediated tissue injury during endotoxemia, and 2) endotoxin-activated complement (C5a) activates neutrophils to produce cytotoxic oxidants.


1999 ◽  
Vol 86 (5) ◽  
pp. 1739-1744 ◽  
Author(s):  
J. A. Scott ◽  
D. G. McCormack

Elevated production of nitric oxide (NO) by the inducible NO synthase (type II, iNOS) may contribute to the vascular hyporesponsiveness and hemodynamic alterations associated with sepsis. Selective inhibition of this isoenzyme is a possible therapeutic intervention to correct these pathophysiological alterations. Aminoguanidine has been shown to be a selective iNOS inhibitor and to correct the endotoxin-mediated vascular hypocontractility in vitro. However, to date aminoguanidine has not been shown to selectively block iNOS activity in vivo. The in vivo effects of aminoguanidine were assessed in the cecal ligation and perforation model of sepsis in rats. Aminoguanidine (1.75–175 mg/kg) was administered to septic and sham-operated rats for 3 h before euthanasia and harvest of tissues. NOS activities were determined in the thoracic aorta and lung from these animals. Aminoguanidine (17.5 mg/kg) did not alter the mean arterial pressure; however, it did inhibit induced iNOS (but not constitutive NOS) activity in the lung and thoracic aorta from septic animals. Only the higher dose of aminoguanidine (175 mg/kg) was able to increase the mean arterial pressure in septic and sham-operated animals. Thus selective inhibition of iNOS in vivo with aminoguanidine is possible, but our data suggest that other mechanisms, in addition to iNOS induction, are responsible for the loss of vascular tone characteristic of sepsis.


1977 ◽  
Vol 233 (3) ◽  
pp. R83-R88 ◽  
Author(s):  
I. H. Chaudry ◽  
M. M. Sayeed ◽  
A. E. Baue

It has been shown that infusion of ATP-MgCl2 proved beneficial in the treatment of shock; however, it is not known whether this effect is due to improvement in the microcirculation or direct provision of energy or a combination of the above or other effects. To elucidate the mechanism of the salutary effect of ATP-MgCl2, we have now examined the in vitro uptake of ATP by liver and kidney of animals in shock. Rats were bled to a mean arterial pressure of 40 Torr and so maintained for 2 hrs. After the rats were killed, liver and kidney were removed and slices of tissue (0.3-0.5 mm thick) were incubated for 1 h in 1.0 ml of Krebs-HCO3 buffer containing 10 mM glucose, 5 mM MgCl2, and 5 mM [8-14C]ATP or 5 mM [8-14C]ADP, or 5 mM [8-14C]AMP, or 5 mM [8-14C]adenosine in 95% O2-5% CO2 and then homogenized. Tissue and medium samples were subjected to electrophoresis to separate and measure the various nucleotides. The uptake of [14C]ATP but not that of [14C]ADP or [14C]adenosine by liver and kidney slices from animals in shock was 2.5 times greater than the corresponding uptake by control slices. Thus, the beneficial effect of ATP-MgCl2 in shock could be due to provision of energy directly to tissue in which ATP levels were lowered.


2020 ◽  
Vol 12 ◽  
pp. 175883592092679
Author(s):  
Seung Tae Kim ◽  
Jung Yong Hong ◽  
Se Hoon Park ◽  
Joon Oh Park ◽  
Young Whan Park ◽  
...  

Background: YYB101, a humanized monoclonal antibody against hepatocyte growth factor (HGF), has shown safety and efficacy in vitro and in vivo. This is a first-in-human trial of this antibody. Materials and Methods: YYB101 was administered intravenously to refractory cancer patients once every 4 weeks for 1 month, and then once every 2 weeks until disease progression or intolerable toxicity, at doses of 0.3, 1, 3, 5, 10, 20, 30 mg/kg, according to a 3+3 dose escalation design. Maximum tolerated dose, safety, pharmacokinetics, and pharmacodynamics were studied. HGF, MET, PD-L1, and ERK expression was evaluated for 9 of 17 patients of the expansion cohort (20 mg/kg). Results: In 39 patients enrolled, no dose-limiting toxicity was observed at 0.3 mg/kg, and the most commonly detected toxicity was generalized edema ( n = 7, 18.9%) followed by pruritis and nausea ( n = 5, 13.5%, each), fatigue, anemia, and decreased appetite ( n = 4, 10.8%, each). No patient discontinued treatment because of adverse events. YYB101 showed dose-proportional pharmacokinetics up to 30 mg/kg. Partial response in 1 (2.5%) and stable disease in 17 (43.5%) were observed. HGF, MET, PD-L1, and ERK proteins were not significant predictors for treatment response. However, serum HGF level was significantly lowered in responders upon drug administration. RNA sequencing revealed a mesenchymal signature in two long-term responders. Conclusion: YYB101 showed favorable safety and efficacy in patients with refractory solid tumors. Based on this phase I trial, a phase II study on the YYB101 + irinotecan combination in refractory metastatic colorectal cancer patients is planned. Conclusion: ClinicalTrials.gov Identifier: NCT02499224


1997 ◽  
Vol 273 (1) ◽  
pp. R324-R330 ◽  
Author(s):  
R. J. Grekin ◽  
C. J. Dumont ◽  
A. P. Vollmer ◽  
S. W. Watts ◽  
R. C. Webb

Portal venous infusion of oleate solution has pressor effects. We have examined efferent mechanisms, measured the response to sustained infusion, and determined the effect of linoleate. Eight conscious animals received concurrent infusions of prazosin or vehicle with portal venous infusion of oleate. Oleate alone increased mean arterial pressure from 109.0 +/- 4.1 to 123.0 +/- 5.8 mmHg (P = 0.02), whereas no increase in blood pressure occurred when oleate was infused with prazosin. In 10 rats, concurrent infusion of losartan had no effect on the pressor activity of portal oleate infusion. Twenty-two animals received portal oleate or vehicle as a continuous infusion for 7 days. Mean arterial pressure (126.1 +/- 2.0 vs. 107.8 +/- 2.6 mmHg, P < 0.001) and heart rate (383 +/- 5 vs. 366 +/- 5, P = 0.0257) were increased in oleate-infused animals. No differences in plasma fatty acids, glucose, insulin, pressor hormones, liver enzymes, or in vitro arterial pressor responsiveness were observed. Portal venous infusion of linoleate increased arterial pressure by 12.2 +/- 3.2 mmHg (P = 0.033). These results indicate that alpha-adrenergic activity is necessary for the acute pressor effects of portal oleate, that sustained portal oleate infusion results in persistent blood pressure elevation, and that other long-chain fatty acids besides oleate have pressor effects.


Sign in / Sign up

Export Citation Format

Share Document