Direct Assessments of the Antioxidant Effects of Propofol Medium Chain Triglyceride/Long Chain Triglyceride on the Brain of Stroke-prone Spontaneously Hypertensive Rats Using Electron Spin Resonance Spectroscopy

2008 ◽  
Vol 109 (3) ◽  
pp. 426-435 ◽  
Author(s):  
Kyo Kobayashi ◽  
Fumihiko Yoshino ◽  
Shun-Suke Takahashi ◽  
Kazuo Todoki ◽  
Yojiro Maehata ◽  
...  

Background Antioxidant anesthetics such as propofol (2,6-diisopropylphenol) directly inhibit lipid peroxidation via the generation of reactive oxygen species. Currently, there are no other studies regarding the direct effects of propofol medium chain triglyceride/long chain triglyceride (MCT/LCT) on reactive oxygen species generation or in experimental models of reactive oxygen species-induced oxidative stress in the brain. Methods The authors investigated the effects of propofol MCT/LCT on reactive oxygen species (hydroxyl radical or superoxide) by electron spin resonance spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide. The effects of propofol MCT/LCT on oxidative stress in the brain of Wistar-Kyoto rats or stroke-prone spontaneously hypertensive rats were investigated by using an in vivo L-band electron spin resonance system to monitor the decay rate of 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl as a nitroxyl spin probe. Results These studies provided direct evidence that propofol MCT/LCT inhibited hydroxyl radical generation, but not superoxide generation. Regarding the hydroxyl radical from the Fenton system, it is likely to be due to the scavenging effects of vehicle. Anesthesia with propofol MCT/LCT reduced the degree of the high oxidative stress in the brain of stroke-prone spontaneously hypertensive rats. Conclusion The current data show that propofol, mixed with clinical reagents (propofol MCT/LCT), resulted in the down-regulation of high oxidative stress due to scavenging hydroxyl radical, as demonstrated by in vitro or in vivo electron spin resonance analysis. These results led to reduced levels of hydroxyl radical, formed by brain injury such as stroke, and may therefore provide advantages for neuroprotection during anesthesia for craniotomy, e.g., in cases of brain disease.

2015 ◽  
Vol 17 (38) ◽  
pp. 24937-24943 ◽  
Author(s):  
Tao Wen ◽  
Weiwei He ◽  
Yu Chong ◽  
Yi Liu ◽  
Jun-Jie Yin ◽  
...  

Pd nanostructures can promote the decomposition of H2O2 in a pH-dependent manner and scavenge superoxide and singlet oxygen.


2005 ◽  
Vol 84 (2) ◽  
pp. 178-182 ◽  
Author(s):  
M.-C. Lee ◽  
F. Yoshino ◽  
H. Shoji ◽  
S. Takahashi ◽  
K. Todoki ◽  
...  

The influence of reactive oxygen species (ROS) on the surface modification of titanium implants and osseointegration is unclear. The aim of this study was to evaluate the ability of titanium dioxide (TiO2) to generate ROS in the presence of H2O2 and to determine whether any ROS thus generated play a role in osseointegration, as measured by electron spin resonance (ESR) spin-trapping with 5,5-dimethyl-1-pyrolline- N-oxide (DMPO). We demonstrate that TiO2 together with H2O2 generated hydroxyl radicals (HO•), as shown by a time-dependent increase in the spin concentration of the ESR signal for the DMPO-OH spin adduct, indicating HO• generation. Interestingly, irradiated TiO2 with H2O2 generated the superoxide (O2•-), as shown by an increase in the spin concentration of the signal for the DMPO-OOH spin adduct, indicating O2•- generation during the period of irradiation (0–5 min). These results suggest that ROS generated from the TiO2 layer may be involved in creating appropriate conditions for the osseointegration of dental implants into alveolar bone tissues.


Sign in / Sign up

Export Citation Format

Share Document