The Effect of Hearing-Protection Devices on Auditory Situational Awareness and Listening Effort

2020 ◽  
Vol 41 (1) ◽  
pp. 82-94
Author(s):  
Christopher J. Smalt ◽  
Paul T. Calamia ◽  
Andrew P. Dumas ◽  
Joseph P. Perricone ◽  
Tejash Patel ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7044
Author(s):  
Leah Fostick ◽  
Nir Fink

 The purpose of the current study was to test sound localization of a spoken word, rarely studied in the context of localization, compared to pink noise and a gunshot, while taking into account the source position and the effect of different hearing protection devices (HPDs) used by the listener. Ninety participants were divided into three groups using different HPDs. Participants were tested twice, under with- and no-HPD conditions, and were requested to localize the different stimuli that were delivered from one of eight speakers evenly distributed around them (starting from 22.5°). Localization of the word stimulus was more difficult than that of the other stimuli. HPD usage resulted in a larger mean root-mean-square error (RMSE) and increased mirror image reversal errors for all stimuli. In addition, HPD usage increased the mean RMSE and mirror image reversal errors for stimuli delivered from the front and back, more than for stimuli delivered from the left and right. HPDs affect localization, both due to attenuation and to limitation of pinnae cues when using earmuffs. Difficulty localizing the spoken word should be considered when assessing auditory functionality and should be further investigated to include HPDs with different attenuation spectra and levels, and to further types of speech stimuli. 


Author(s):  
David C. Byrne ◽  
Thais C. Morata

Exposure to industrial noise and the resulting effect of occupational hearing loss is a common problem in nearly all industries. This chapter describes industrial noise exposure, its assessment, and hearing disorders that result from overexposure to noise. Beginning with the properties of sound, noise-induced hearing loss and other effects of noise exposure are discussed. The impact of hearing disorders and the influence of other factors on hearing loss are described. Typically, noise-induced hearing loss develops slowly, and usually goes unnoticed until a significant impairment has occurred. Fortunately, occupational hearing loss is nearly always preventable. Therefore, this chapter gives particular attention to recommendations for measures to prevent occupational hearing loss such as engineering noise controls and hearing protection devices.


Author(s):  
Chanbeom Kwak ◽  
Woojae Han

To prevent intensive noise exposure in advance and be safely controlled during such exposure, hearing protection devices (HPDs) have been widely used by workers. The present study evaluates the effectiveness of these HPDs, partitioned into three different outcomes, such as sound attenuation, sound localization, and speech perception. Seven electronic journal databases were used to search for published articles from 2000 to 2021. Based on inclusion criteria, 20 articles were chosen and then analyzed. For a systematic review and meta-analysis, standardized mean differences (SMDs) and effect size were calculated using a random-effect model. The funnel plot and Egger’s regression analysis were conducted to assess the risk of bias. From the overall results of the included 20 articles, we found that the HPD function performed significantly well for their users (SMDs: 0.457, 95% confidence interval (CI): 0.034–0.881, p < 0.05). Specifically, a subgroup analysis showed a meaningful difference in sound attenuation (SMDs: 1.080, 95% CI: 0.167–1.993, p < 0.05) when to wear and not to wear HPDs, but indicated no significance between the groups for sound localization (SMDs: 0.177, 95% CI: 0.540–0.894, p = 0.628) and speech perception (SMDs: 0.366, 95% CI: −0.100–1.086, p = 0.103). The HPDs work well for their originally designated purposes without interfering to find the location of the sound sources and for talking between the workers. Taking into account various factors, such as the characteristics of the users, selection of appropriate types, and fitting methods for wearing in different circumstances, seems to be necessary for a reliable systematic analysis in terms of offering the most useful information to the workers.


2013 ◽  
Vol 19 (3) ◽  
pp. 127 ◽  
Author(s):  
Noorain Alam ◽  
Vikas Sinha ◽  
Rajiv Jalvi ◽  
Deepanshu Gurnani ◽  
DilavarA Barot ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
Leigh Ann Reel ◽  
Candace Bourland Hicks ◽  
Courtney Arnold

Purpose: Noise-induced hearing loss (NIHL) has been found in rural children, potentially due to occupational and recreational noise exposure without consistent use of hearing protection devices (HPDs). However, questions remain regarding the specifics of rural adolescents' noise exposure and use of hearing protection around different types of noise. As such, the purpose of the current study was to provide preliminary results on rural adolescents' noise exposure and use of hearing protection for gunfire, heavy machinery, power tools, all-terrain vehicles (ATVs), and music. Method: A questionnaire was administered to 197 students (seventh to 12th grade) from rural schools in West Texas. Questions were related to noise exposure and use of HPDs for specific categories of noise. Testing was performed at the schools, with an investigator recording each student's responses. Results: Approximately 18%–44% of adolescents reported exposure 12 or more times a year to gunfire, heavy machinery, power tools, and ATVs. Only 1%–18% of the adolescents reported never being exposed to such noise sources. Almost half of rural adolescents never used hearing protection around gunfire, and 77%–91% reported never wearing hearing protection when exposed to heavy machinery, power tools, and ATVs. Conclusions: The current study revealed that rural adolescents are exposed to noise sources that could damage their hearing. However, the majority of rural adolescents do not consistently wear hearing protection. Additional research is now needed to extend these findings by assessing rural adolescents' duration of exposure to different noise sources, in addition to investigating prevention of NIHL in this population. Supplemental Material https://doi.org/10.23641/asha.17139335


2021 ◽  
Vol 150 (4) ◽  
pp. A340-A340
Author(s):  
Nathaniel J. Spencer ◽  
Zachariah N. Ennis ◽  
Natalie Jackson ◽  
Brian D. Simpson ◽  
Eric R. Thompson

Sign in / Sign up

Export Citation Format

Share Document