scholarly journals Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders

2010 ◽  
Vol 12 (11) ◽  
pp. 694-702 ◽  
Author(s):  
Jill A Rosenfeld ◽  
Blake C Ballif ◽  
Beth S Torchia ◽  
Trilochan Sahoo ◽  
J Britt Ravnan ◽  
...  
2016 ◽  
Vol 89 (6) ◽  
pp. 708-718 ◽  
Author(s):  
V. Oikonomakis ◽  
K. Kosma ◽  
A. Mitrakos ◽  
C. Sofocleous ◽  
P. Pervanidou ◽  
...  

2019 ◽  
Vol 50 (06) ◽  
pp. 367-377
Author(s):  
S. Monteiro ◽  
J. Pinto ◽  
A. Mira Coelho ◽  
M. Leão ◽  
S. Dória

Background Autism spectrum disorders (ASD) affect many children with an estimated prevalence of 1%. Array-comparative genomic hybridization (CGH) offers significant sensitivity for the identification of submicroscopic chromosomal abnormalities and it is one of the most used techniques in daily practice. The main objective of this study was to describe the usefulness of array-CGH in the etiologic diagnosis of ASD. Methods Two-hundred fifty-three patients admitted to a neurogenetic outpatient clinic and diagnosed with ASD were selected for array-CGH (4 × 180K microarrays). Public databases were used for classification in accordance with the American College of Medical Genetics Standards and Guidelines. Results About 3.56% (9/253) of copy number variations (CNVs) were classified as pathogenic. When likely pathogenic CNVs were considered, the rate increased to 11.46% (29/253). Some CNVs apparently not correlated to the ASD were also found. Considering a phenotype–genotype correlation, the patients were divided in two groups. One group according to previous literature includes all the CNVs related to ASDs (23 CNVs present in 22 children) and another with those apparently not related to ASD (10 CNVs present in 7 children). In 18 patients, a next-generation sequencing (NGS) panel were performed. From these, one pathogenic and 16 uncertain significance variants were identified. Conclusion The results of our study are in accordance with the literature, highlighting the relevance of array-CGH in the genetic of diagnosis of ASD population, namely when associated with other features. Our study also reinforces the need for complementarity between array-CGH and NGS panels or whole exome sequencing in the etiological diagnosis of ASD.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
L. D’Abate ◽  
S. Walker ◽  
R. K. C. Yuen ◽  
K. Tammimies ◽  
J. A. Buchanan ◽  
...  

AbstractIdentification of genetic biomarkers associated with autism spectrum disorders (ASDs) could improve recurrence prediction for families with a child with ASD. Here, we describe clinical microarray findings for 253 longitudinally phenotyped ASD families from the Baby Siblings Research Consortium (BSRC), encompassing 288 infant siblings. By age 3, 103 siblings (35.8%) were diagnosed with ASD and 54 (18.8%) were developing atypically. Thirteen siblings have copy number variants (CNVs) involving ASD-relevant genes: 6 with ASD, 5 atypically developing, and 2 typically developing. Within these families, an ASD-related CNV in a sibling has a positive predictive value (PPV) for ASD or atypical development of 0.83; the Simons Simplex Collection of ASD families shows similar PPVs. Polygenic risk analyses suggest that common genetic variants may also contribute to ASD. CNV findings would have been pre-symptomatically predictive of ASD or atypical development in 11 (7%) of the 157 BSRC siblings who were eventually diagnosed clinically.


2015 ◽  
Vol 9 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Chakravarthi Kanduri ◽  
Katri Kantojärvi ◽  
Paula M Salo ◽  
Raija Vanhala ◽  
Gemma Buck ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Elif Funda Sener

Autism spectrum disorders (ASDs) are characterized by language impairments, social deficits, and repetitive behaviors. The onset of symptoms occurs by the age of 3 and shows a lifelong persistence. Genetics plays a major role in the etiology of ASD. Except genetics, several potential risk factors (environmental factors and epigenetics) may contribute to ASD. Copy number variations (CNVs) are the most widespread structural variations in the human genome. These variations can alter the genome structure either by deletion or by duplication. CNVs can be de novo or inherited. Chromosomal rearrangements have been detected in 5–10% of the patients with ASD and recently copy number changes ranging from a few kilobases (kb) to several megabases (Mb) in size have been reported. Recent data have also revealed that submicroscopic CNVs can have a role in ASD, and de novo CNVs seem to be a more common risk factor in sporadic compared with inherited forms of ASD. CNVs are being implicated as a contributor to the pathophysiology of complex neurodevelopmental disorders and they can affect a wide range of human phenotypes including mental retardation (MR), autism, neuropsychiatric disorders, and susceptibility to other complex traits such as HIV, Crohn’s disease, and psoriasis. This review emphasizes the major CNVs reported to date in ASD.


2019 ◽  
Vol 7 (8) ◽  
Author(s):  
Tania Bitar ◽  
Walid Hleihel ◽  
Sylviane Marouillat ◽  
Sandrine Vonwill ◽  
Marie‐Laure Vuillaume ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
K Rönö ◽  
E Rissanen ◽  
C Bergh ◽  
U B Wennerholm ◽  
S Opdahl ◽  
...  

Abstract Study question Does the risk of neurodevelopmental disorders differ between singletons born after various assisted reproductive techniques (ART) and spontaneous conception (SC) until young adulthood? Summary answer ART children had a slightly increased rate of learning and motor functioning disorders, autism spectrum disorders (ASD), and ADHD and conduct disorders. What is known already Studies on the impact of ART on offspring have reported both increased risk and comparable incidences of neurodevelopmental disorders between ART and SC offspring. The most studied neurodevelopmental disorders with ART are autism spectrum disorders (ASD.) There is, however, no consensus on the risk of ASD for ART children. The risk for other neurodevelopmental disorders, like attention-deficit hyperactivity disorders (ADHD) or tic disorder among ART children, is also a debated issue, as studies are scarce. Study design, size, duration A Nordic register-based cohort study including all singleton live births (N = 5 076 444) after ART (n = 116 909) or SC (n = 4 959 535) between 1995 and 2014 in Denmark and Finland, 1995 and 2015 in Sweden; and 2005 and 2015 in Norway. Children with intellectual disability (ICD-10: F70-F79) are excluded. The children are followed up to young adulthood (the year 2014 in Denmark and Finland, and 2015 in Norway and Sweden). Participants/materials, setting, methods Offspring outcomes were defined as following ICD-10 diagnoses: learning and motor functioning disorders (F80-83), ASD (F84), ADHD and conduct disorders (F90-F92), and tic disorders/Tourette (F95). We calculated crude and adjusted hazard ratios (HR) for neurodevelopmental diagnoses using Cox regression. Adjustments were made for the country, maternal age at the delivery, parity, smoking, and maternal psychiatric morbidity. Main results and the role of chance The cumulative incidences of neurodevelopmental disorders in the cohort were 1.74% for F90-F92, 1.40% for F80-83, 0.66% for F84, and 0.22% for F95. In crude Cox-regression ART children had an increased likelihood during the follow-up of being diagnosed with F84 (HR 1.12 [95% CI 1.04-1.21]) and F95 (HR 1.21 [95% CI 1.06-1.38]), but not with F80-83 (HR 1.01 [95% CI 0.96-1.07]) or F90-92 (HR 0.82 [95% CI 0.77-0.86]). After adjustments the likelihood was increased for F80-83 (HR 1.20 [95% CI 1.13-1.27]), F84 (HR 1.12 [95% CI 1.03-1.24]), and F90-92 (HR 1.09 [95% CI 1.04-1.19]), but nor for F95 (HR 1.13 [95% CI 0.99-1.30]). After adjustments, intracytoplasmic sperm injection children compared with in vitro fertilization children had similar likelihood during follow-up for F80-83 (1.06 [95% CI 0.89–1.25]), for F84 (HR 0.92 [95% CI 0.76–1.11]), for F90-92 (HR 0.96 [95% CI 0.83–1.12]), and for F95 (HR 1.16 [95% CI 0.83–1.63]). After adjustments, frozen embryo transfer children compared with fresh embryo transfer children had similar likelihood during follow-up for F80-83 (HR 1.11 [95% CI 0.90–1.37]), F84 (HR 0.98 [95% CI 0.76–1.27]), F90-92 (HR 0.96 [95% CI 0.78–1.19]), and F95 (HR 0.83 [95% CI 0.51–1.35]). Limitations, reasons for caution There may be residual confounding by unknown or unmeasured confounders. We lack information on possible confounders like the reason and length of infertility, maternal substance use other than self-reported smoking status, paternal age, and parental somatic morbidity. Additional limitations are differences in registration practice and data availability between study countries. Wider implications of the findings This is the largest singleton cohort and the first multinational study on the risk for neurodevelopmental disorders among ART children. While the rate of some neurodevelopmental disorders was increased among ART children, the absolute risk was moderate. The type of ART did not associate with the incidence of neurodevelopmental disorders. Trial registration number ISRCTN11780826


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Olafur O. Gudmundsson ◽  
G. Bragi Walters ◽  
Andres Ingason ◽  
Stefan Johansson ◽  
Tetyana Zayats ◽  
...  

Abstract Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable common childhood-onset neurodevelopmental disorder. Some rare copy number variations (CNVs) affect multiple neurodevelopmental disorders such as intellectual disability, autism spectrum disorders (ASD), schizophrenia and ADHD. The aim of this study is to determine to what extent ADHD shares high risk CNV alleles with schizophrenia and ASD. We compiled 19 neuropsychiatric CNVs and test 14, with sufficient power, for association with ADHD in Icelandic and Norwegian samples. Eight associate with ADHD; deletions at 2p16.3 (NRXN1), 15q11.2, 15q13.3 (BP4 & BP4.5–BP5) and 22q11.21, and duplications at 1q21.1 distal, 16p11.2 proximal, 16p13.11 and 22q11.21. Six of the CNVs have not been associated with ADHD before. As a group, the 19 CNVs associate with ADHD (OR = 2.43, P = 1.6 × 10−21), even when comorbid ASD and schizophrenia are excluded from the sample. These results highlight the pleiotropic effect of the neuropsychiatric CNVs and add evidence for ADHD, ASD and schizophrenia being related neurodevelopmental disorders rather than distinct entities.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Mehdi Zarrei ◽  
Christie L. Burton ◽  
Worrawat Engchuan ◽  
Edwin J. Young ◽  
Edward J. Higginbotham ◽  
...  

Abstract Copy number variations (CNVs) are implicated across many neurodevelopmental disorders (NDDs) and contribute to their shared genetic etiology. Multiple studies have attempted to identify shared etiology among NDDs, but this is the first genome-wide CNV analysis across autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia (SCZ), and obsessive-compulsive disorder (OCD) at once. Using microarray (Affymetrix CytoScan HD), we genotyped 2,691 subjects diagnosed with an NDD (204 SCZ, 1,838 ASD, 427 ADHD and 222 OCD) and 1,769 family members, mainly parents. We identified rare CNVs, defined as those found in <0.1% of 10,851 population control samples. We found clinically relevant CNVs (broadly defined) in 284 (10.5%) of total subjects, including 22 (10.8%) among subjects with SCZ, 209 (11.4%) with ASD, 40 (9.4%) with ADHD, and 13 (5.6%) with OCD. Among all NDD subjects, we identified 17 (0.63%) with aneuploidies and 115 (4.3%) with known genomic disorder variants. We searched further for genes impacted by different CNVs in multiple disorders. Examples of NDD-associated genes linked across more than one disorder (listed in order of occurrence frequency) are NRXN1, SEH1L, LDLRAD4, GNAL, GNG13, MKRN1, DCTN2, KNDC1, PCMTD2, KIF5A, SYNM, and long non-coding RNAs: AK127244 and PTCHD1-AS. We demonstrated that CNVs impacting the same genes could potentially contribute to the etiology of multiple NDDs. The CNVs identified will serve as a useful resource for both research and diagnostic laboratories for prioritization of variants.


Sign in / Sign up

Export Citation Format

Share Document