Peak Efficiency of NaI Detector and Coincidence Summing Factor for Different Cylindrical Sources Using Geant4 Simulation

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Jamila S. Alzahrani ◽  
Aljawhara H. Almuqrin
2019 ◽  
Vol 54 (2) ◽  
pp. 133-140
Author(s):  
W. Khan ◽  
C. He ◽  
Y. Cao

A detailed study of the full energy peak efficiency of a high purity germanium (HPGe) detector including the effect of source self-absorption and coincidence summing was performed using Monte Carlo simulation, as it is difficult and time-consuming to measure the full energy peak efficiency experimentally. Cylindrical water composition source was simulated with different characteristics, covering the energy range from 60 to 1836 keV. Self-absorption correction factors (SAFcal) were calculated for two source volumes and obtained good agreement with the experimental results except for (60Co and 88Y) nuclides. The simulation was performed for various samples with different densities and observed their effects on the full energy peak efficiency value of the detector. In the case of extended volumetric source, the coincidence summing correction factors (CSFcal) for two nuclides (60Co and 88Y) were estimated with the GEANT4 simulation toolkit. The effect of correction factors on different cylindrical source volumes was also investigated. With the self-absorption and coincidence summing effect, the best agreement was achieved between simulated and experimental results with discrepancy less than 2% for all of the radionuclides included in two source volumes.


Author(s):  
Mohamed Elsafi ◽  
Jamila S. Alzahrani ◽  
Mahmoud I. Abbas ◽  
Mona M. Gouda ◽  
Abouzeid A. Thabet ◽  
...  

2017 ◽  
Vol 55 (2) ◽  
pp. 478-489 ◽  
Author(s):  
Ahmed M. El-Khatib ◽  
Bohaysa A. Salem ◽  
Mohamed S. Badawi ◽  
Mona M. Gouda ◽  
Abouzeid A. Thabet ◽  
...  

Author(s):  
Peter Rez

Everything that rolls along the ground uses energy to overcome both rolling resistance and air resistance. Air resistance is more significant at higher speeds. Repeated accelerations dominate energy use in stop–start city driving. Not surprisingly, heavy, large SUVs use more energy to go a given distance than lighter, more streamlined cars. Due to the mismatch between the torque required and the rotation rate of the drive wheels, internal combustion engines in cars or trucks do not operate at their peak efficiency. Trains are the most efficient form of ground transportation due to both the lower rolling resistance of steel wheels on railroad tracks and the lower air resistance of its long and thin structure. A further advantage is that rail with fixed tracks can take advantage of the efficient generation of electrical energy. This is also obviously the main disadvantage; trains can only go where tracks have been laid.


Proceedings ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 13
Author(s):  
Yixuan Sun ◽  
Stephen Beeby

This paper presents the COMSOL simulations of magnetically coupled resonant wireless power transfer (WPT), using simplified coil models for embroidered planar two-coil and four-coil systems. The power transmission of both systems is studied and compared by varying the separation, rotation angle and misalignment distance at resonance (5 MHz). The frequency splitting occurs at short separations from both the two-coil and four-coil systems, resulting in lower power transmission. Therefore, the systems are driven from 4 MHz to 6 MHz to analyze the impact of frequency splitting at close separations. The results show that both systems had a peak efficiency over 90% after tuning to the proper frequency to overcome the frequency splitting phenomenon at close separations below 10 cm. The four-coil design achieved higher power efficiency at separations over 10 cm. The power efficiency of both systems decreased linearly when the axial misalignment was over 4 cm or the misalignment angle between receiver and transmitter was over 45 degrees.


Sign in / Sign up

Export Citation Format

Share Document