scholarly journals Computer-assisted navigation for removal of the foreign body in the lower jaw with a mandible reference frame

Medicine ◽  
2020 ◽  
Vol 99 (3) ◽  
pp. e18875 ◽  
Author(s):  
Shuo Chen ◽  
Ying-Heng Liu ◽  
Xin Gao ◽  
Chan-Yuan Yang ◽  
Zhi Li
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Shinsuke Yamamoto ◽  
Shigeo Hara ◽  
Toshihiko Takenobu

Computer-assisted navigation plays an important role in modern craniomaxillofacial surgery. Although headpins and skull posts are widely used for the fixation of the reference frame, they require the use of invasive procedures. Headbands are easily displaced intraoperatively, thus reducing the accuracy of the surgical outcome. This study reported the utility of a novel splint integrated with a reference frame and registration markers for maxillary navigation surgery. A maxillary splint with a 10 cm resin handle was fabricated before surgery, to fix the reference frame to the splint. The splint was set after the incorporation of fiducial gutta-percha markers into both the splint and resin handle for marker-based pair-point registration. A computed tomography (CT) scan was acquired for preoperative CT-based planning. A marker-based pair-point registration procedure can be completed easily and noninvasively using this custom-made integrated splint, and maxillary navigation surgery can be performed with high accuracy. This method also provides maximum convenience for the surgeon, as the splint does not require reregistration, and can be removed temporarily when required. The splint-to-CT data registration strategy has potential applicability not only for maxillary surgery but also for otolaryngologic surgery, neurosurgery, and surgical repair after craniofacial trauma.


2014 ◽  
Vol 75 (S 02) ◽  
Author(s):  
S. Heredero ◽  
J. Solivera ◽  
A. Candau ◽  
A. Dean ◽  
F. Alamillos ◽  
...  

2021 ◽  
Author(s):  
Timothy J Yee ◽  
Michael J Strong ◽  
Matthew S Willsey ◽  
Mark E Oppenlander

Abstract Nonunion of a type II odontoid fracture after the placement of an anterior odontoid screw can occur despite careful patient selection. Countervailing factors to successful fusion include the vascular watershed zone between the odontoid process and body of C2 as well as the relatively low surface area available for fusion. Patient-specific factors include osteoporosis, advanced age, and poor fracture fragment apposition. Cervical 1-2 posterior instrumented fusion is indicated for symptomatic nonunion. The technique leverages the larger posterolateral surface area for fusion and does not rely on bony growth in a watershed zone. Although loss of up to half of cervical rotation is expected after C1-2 arthrodesis, this may be better tolerated in the elderly, who may have lower physical demands than younger patients. In this video, we discuss the case of a 75-yr-old woman presenting with intractable mechanical cervicalgia 7 mo after sustaining a type II odontoid fracture and undergoing anterior odontoid screw placement at an outside institution. Cervical radiography and computed tomography exhibited haloing around the screw and nonunion across the fracture. We demonstrate C1-2 posterior instrumented fusion with Goel-Harms technique (C1 lateral mass and C2 pedicle screws), utilizing computer-assisted navigation, and modified Sonntag technique with rib strut autograft.  Posterior C1-2-instrumented fusion with rib strut autograft is an essential technique in the spine surgeon's armamentarium for the management of C1-2 instability, which can be a sequela of type II dens fracture. Detailed video demonstration has not been published to date.  Appropriate patient consent was obtained.


2006 ◽  
Vol 64 (3) ◽  
pp. 550-559 ◽  
Author(s):  
Clemens Klug ◽  
Kurt Schicho ◽  
Oliver Ploder ◽  
Kaan Yerit ◽  
Franz Watzinger ◽  
...  

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Lukas Postl ◽  
Thomas Mücke ◽  
Stefan Hunger ◽  
Oliver Bissinger ◽  
Michael Malek ◽  
...  

Abstract Background The accuracy of computer-assisted biopsies at the lower jaw was compared to the accuracy of freehand biopsies. Methods Patients with a bony lesion of the lower jaw with an indication for biopsy were prospectively enrolled. Two customized bone models per patient were produced using a 3D printer. The models of the lower jaw were fitted into a phantom head model to simulate operation room conditions. Biopsies for the study group were taken by means of surgical guides and freehand biopsies were performed for the control group. Results The deviation of the biopsy axes from the planning was significantly less when using templates. It turned out to be 1.3 ± 0.6 mm for the biopsies with a surgical guide and 3.9 ± 1.1 mm for the freehand biopsies. Conclusions Surgical guides allow significantly higher accuracy of biopsies. The preliminary results are promising, but clinical evaluation is necessary.


2011 ◽  
Vol 3 (4) ◽  
pp. 259 ◽  
Author(s):  
Dae Kyung Bae ◽  
Sang Jun Song

2019 ◽  
Vol 2 (1-3) ◽  
pp. 33-39
Author(s):  
Atul F. Kamath ◽  
Rachel R. Mays

Periacetabular osteotomy (PAO) is an effective surgical treatment for developmental hip dysplasia. The goal of PAO is to reorient the acetabulum to increase acetabular coverage of the femoral head, as well as to reduce contact pressures within the hip joint. The primary challenge of PAO is to accurately achieve the desired acetabular fragment orientation, while maximizing containment and congruency. As key parts of the procedure are performed out of direct field of view of the surgeon, combined with this challenge of precise spatial orientation, there is a potential role for technologies such as surgical navigation. Adjunctive technology may provide information on the orientation of repositioned acetabulum and may offer a useful assist in performing PAO. Here, we present a case of developmental dysplasia of the hip treated via PAO with the addition of an imageless computer navigation device. Surgery was successful, and, at 3 months after procedure, the patient was progressing well. To our best knowledge, this is the first case using imageless computer-assisted navigation in PAO surgery.


Sign in / Sign up

Export Citation Format

Share Document