Bone mass measurements in men and women with chronic kidney disease

2010 ◽  
Vol 19 (4) ◽  
pp. 343-348 ◽  
Author(s):  
Sophie A Jamal
1995 ◽  
Vol 68 (810) ◽  
pp. 614-620 ◽  
Author(s):  
A Stewart ◽  
D Felsenberg ◽  
L Kalidis ◽  
D M Reid

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Shingo Nakayama ◽  
Michihiro Satoh ◽  
Takahisa Murakami ◽  
Yukako Tatsumi ◽  
Tomoko Muroya ◽  
...  

Abstract Background and Aims While previous studies have reported the association between serum uric acid (SUA) and chronic kidney disease (CKD) incidence, the sex differences in this association remain controversial. Therefore, we examined the association between SUA levels and CKD incidence in middle-aged adults stratified by sex using data from a large-scale health check-up. Method We analyzed information from the JMDC database, which included the annual health check-up data of Japanese employees and their dependents aged <75 years. Among those individuals, we analyzed data from 138,511 individuals without CKD, kidney disease, or a history of cardiovascular disease at baseline. CKD was defined as an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 and/or proteinuria. We divided the participants into 9 and 7 groups according to SUA levels for men and women, respectively. A Cox model was applied to assess the adjusted hazard ratios (HRs) for CKD incidence in each SUA level group using an SUA concentration of 4.0–4.9 mg/dL as the reference after adjusting for age, body mass index, current or ex-smoker, current or ex-drinker, diabetes mellitus, dyslipidemia, systolic blood pressure, use of anti-hyperuricemic drugs, and baseline eGFR. Results The mean participant age was 44.1 years, and 29.6% were women. The mean SUA levels were 5.9 mg/dL and 4.1 mg/dL in men and women, respectively. During the mean follow-up period of 4.68 years, 12,589 participants developed CKD. The age-standardized incidence rates for CKD were 17.88/17.80 per 1000 person-years in men/women with SUA concentrations of 4.0–4.9 mg/dL, 209.76 per 1000 person-years in men with SUA ≥11.0 mg/dL, and 73.38 per 1000 person-years in women with SUA ≥ 9.0 mg/dL. The fully adjusted HRs (95% confidence interval [CI], P value) for CKD incidence in the groups with SUA concentrations of <4.0, 10.0–10.9, and ≥11.0 mg/dL compared with those with SUA of 4.0–4.9 mg/dL among men were 1.13 (1.01–1.26, P=0.030), 1.98 (1.32–2.97, P=0.0010), and 3.74 (1.68–8.35, P=0.0013), respectively. In women, the fully adjusted HRs for CKD incidence in the groups with SUA concentrations of <4.0, 8.0–8.9, and ≥9.0 mg/dL were 1.08 (1.01–1.16, P=0.032), 2.39 (1.07–5.35, P=0.034), and 3.20 (0.80–12.8, P=0.10), respectively. Similar results were observed when we performed the sensitivity analysis excluding 8,411 individuals with hypertensive treatment from the main analysis. The HRs for the outcomes caused by the onset of eGFR <60 mL/min/1.73 m2 or proteinuria separately were similar to those for the main results. Conclusion The results of the present study demonstrated an increased risk of CKD in men with SUA concentrations of <4.0 and ≥10.0 mg/dL and <4.0 and ≥8.0 mg/dL in women compared to those with SUA concentrations of 4.0–4.9 mg/dL after adjusting for various covariates. Both high and low SUA levels were risk factors for CKD in middle-aged men and women. Hyperuricemia was demonstrated to cause renal injury due to the intraluminal deposition of uric acid crystals in the renal collecting duct. Hyperuricemia may also induce endothelial dysfunction, activation of the renin-angiotensin system, and induction of inflammation and stimulation of vascular smooth muscle cell proliferation by the induction of cyclooxygenase-2. However, as uric acid is one of the most important antioxidants in human plasma, low SUA levels may increase the risk of CKD incidence through decreased antioxidant activity. These mechanisms are implicated in the pathogenesis of CKD caused by high and low SUA levels. In addition, the SUA levels and ranges associated with increased risks of CKD incidence differed by sex.


1985 ◽  
Vol 9 (3) ◽  
pp. 636
Author(s):  
S. M. Ott ◽  
J. A. Hanson ◽  
R. F. Kileoyne ◽  
R. Murano ◽  
T. K. Lewellen ◽  
...  

Author(s):  
G. E. Rösingh ◽  
G. Hart ◽  
J. B. v. d. Schoot ◽  
K. L. M. Bon-Nijssen

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Suneela Zaigham ◽  
Anders Christensson ◽  
Per Wollmer ◽  
Gunnar Engström

Abstract Background Although the prevalence of kidney disease is higher in those with reduced lung function, the longitudinal relationship between low lung function and future risk of chronic kidney disease (CKD) has not been widely explored. Methods Baseline lung function was assessed in 20,700 men and 7325 women from 1974 to 1992. Mean age was 43.4 (±6.6) and 47.5 (±7.9) for men and women respectively. Sex-specific quartiles of FEV1 and FVC (L) were created (Q4: highest, reference) and the cohort was also divided by the FEV1/FVC ratio (≥ or < 0.70). Cox proportional hazards regression was used to determine the risk of incident CKD events (inpatient or outpatient hospital diagnosis of CKD) in relation to baseline lung function after adjustment for various confounding factors. Results Over 41 years of follow-up there were 710 and 165 incident CKD events (main diagnosis) in men and women respectively. Low FEV1 was strongly associated with future risk of CKD in men (Q1 vs Q4 adjusted HR: 1.46 (CI:1.14–1.89), p-trend 0.002). Similar findings were observed for FVC in men (1.51 (CI:1.16–1.95), p-trend 0.001). The adjusted risks were not found to be significant in women, for either FEV1 or FVC. FEV1/FVC < 0.70 was not associated with increased incidence of CKD in men or women. Conclusion Low FEV1 and FVC levels at baseline are a risk factor for the development of future incident CKD in men. Monitoring kidney function in those with reduced vital capacity in early life could help with identifying those at increased risk of future CKD.


Sign in / Sign up

Export Citation Format

Share Document