Inductively Coupled Intraoral Flexible Coil for Increased Visibility of Dental Root Canals in Magnetic Resonance Imaging

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Agazi Samuel Tesfai ◽  
Andreas Vollmer ◽  
Ali Caglar Özen ◽  
Moritz Braig ◽  
Wiebke Semper-Hogg ◽  
...  
2010 ◽  
Vol 65 (3) ◽  
pp. 882-888 ◽  
Author(s):  
Matthias Korn ◽  
Reiner Umathum ◽  
Jessica Schulz ◽  
Wolfhard Semmler ◽  
Michael Bock

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Akbar Alipour ◽  
Alan C. Seifert ◽  
Bradley N. Delman ◽  
Philip M. Robson ◽  
Raj Shrivastava ◽  
...  

AbstractIn recent years, new human magnetic resonance imaging systems operating at static magnetic fields strengths of 7 Tesla or higher have become available, providing better signal sensitivity compared with lower field strengths. However, imaging human-sized objects at such high field strength and associated precession frequencies is limited due to the technical challenges associated with the wavelength effect, which substantially disturb the transmit field uniformity over the human body when conventional coils are used. Here we report a novel passive inductively-coupled radiofrequency resonator array design with a simple structure that works in conjunction with conventional coils and requires only to be tuned to the scanner’s operating frequency. We show that inductive-coupling between the resonator array and the coil improves the transmit efficiency and signal sensitivity in the targeted region. The simple structure, flexibility, and cost-efficiency make the proposed array design an attractive approach for altering the transmit field distribution specially at high field systems, where the wavelength is comparable with the tissue size.


2021 ◽  
Vol 11 (3) ◽  
pp. 1051
Author(s):  
Tomasz Olek ◽  
Władysław P. Węglarz ◽  
Agata Trzcionka ◽  
Arkadiusz Dziedzic ◽  
Marta Tanasiewicz

The purpose of the mechanical root canal preparation is to clean it and give it the right shape. The preparation should be carried out in a way that maintains the original curvature and initial orientation of the apical end. Insufficient root canal preparation may prevent effective chemical decontamination and obturation to the full working length. The study aims to evaluate the shaping ability and effectiveness of the NiTi rotary and reciprocating endodontic instruments, compared to standard hand files using magnetic resonance imaging based on spin echo. Material and methods: A comparative study of severely curved root canals’ shaping abilities using three NiTi systems and K-type hand files was performed, with 40 training “endo-blocks” presenting with “L-shaped” canal. The root canal topography and geometry “before” and “after” mechanical preparation obtained by the magnetic resonance imaging based on the spin echo was used. The main measurement was made using the RARE sequence, with slice thickness reduced to 100 micrometers. In order to improve the signal-to-noise ratio, NA = 25 was used. To minimize the measurement time, the field of view was limited to a cuboid 17 × 16 × 3 mm, with a resolution of 33 × 31 × 100 micrometers. Each 3D image consisted of 512 × 512 × 30 voxels. The imaging plane has been selected in such a way as to fully illustrate the course of curvature of the model root canal. For TR = 5 s and effective TE = 36 ms, TA was 1.5 h. Measurements were performed twice, before and after the preparation of endo-blocs with a selected type of endodontic tools. Results: The use of rotary NiTi instruments caused a substantial alteration in the curvature topography and angle of the canals and change in the curvature length. The substantial discrepancy was observed during the preparation of simulated root canals with the reciprocating instruments and the use of WaveOne files led to the largest volume variation. No dependence between the amount of material removed and the measured intracanal side was observed when NiTi instruments were used. Preparation with hand K-type files revealed a relationship between the measuring side and the amount of material removed, with the lower values obtained for the canals’ internal curvatures. Conclusions: All the studied endodontic instruments allow a safe preparation of curved root canals in simulating in vivo conditions. The abbreviation of original root canals topography does not seem to be significantly altered following mechanical preparation of simulated, severely curved root canals. The spin echo-based magnetic resonance imaging technique can be utilized for visualization of the internal topography of the root’s canals in vitro before and after their mechanical preparation in in vitro conditions. In the future, magnetic resonance microscopy may become a diagnostic tool supporting the work of a clinician.


2010 ◽  
Vol 61 (3) ◽  
pp. 685-692 ◽  
Author(s):  
Michael G. Lawrence ◽  
Jurg Keller ◽  
Yvan Poussade

Stable gadolinium (Gd) complexes have been used as paramagnetic contrast agents for magnetic resonance imaging (MRI) for over 20 years, and have recently been identified as environmental contaminants. As the rare earth elements (REE), which include Gd, are able to be measured accurately at very low concentrations (e.g. Tb is measured at 7 fmol/kg in this study) using inductively coupled plasma mass spectrometry (ICP-MS), it is possible to determine the fate of this class of compounds during the production of purified recycled water from effluent. Coagulation and microfiltration have negligible removal, with the major removal step occurring across the reverse osmosis membrane where anthropogenic Gd (the amount of Gd attributable to MRI contrast agents) is reduced from 0.39 nmol/kg to 0.59 pmol/kg, a reduction of 99.85%. The RO concentrate has anthropogenic Gd concentrations of 2.6 nmol/kg, an increase in concentration in line with the design characteristics of the plant. The increased concentration in the RO concentrate may allow further development of anthropogenic Gd as a tracer of the fate of the RO concentrate in the environment.


Sign in / Sign up

Export Citation Format

Share Document