Simultaneous treatment with pentoxifylline does not adversely affect the neurotrophic effects of brain-derived neurotrophic factor on spiral ganglion neurons

Neuroreport ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Christin Geissler ◽  
Miriam Blumenstock ◽  
Jennis Gabrielpillai ◽  
Leon Guchlerner ◽  
Timo Stöver ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Jennifer Harre ◽  
Laura Heinkele ◽  
Melanie Steffens ◽  
Athanasia Warnecke ◽  
Thomas Lenarz ◽  
...  

Preservation of the excitability of spiral ganglion neurons (SGN) may contribute to an improved speech perception after cochlear implantation. Thus, the application of exogenous neurotrophic factors such as the neurotrophin brain-derived neurotrophic factor (BDNF) to increase SGN survival in vitro and in vivo is a promising pharmacological approach in cochlear implant (CI) research. Due to the difficult pharmacokinetic profile of proteins such as BDNF, there is a quest for small molecules to mediate the survival of SGN or to increase the efficacy of BDNF. The C3 exoenzyme from Clostridium botulinum could be a potential new candidate for the protection and regeneration of SGN. Inhibition of the RhoA GTPase pathway which can be mediated by C3 is described as a promising strategy to enhance axonal regeneration and to exert pro-survival signals in neurons. Nanomolar concentrations of C3, its enzymatically inactive form C3E174Q, and a 26mer C-terminal peptide fragment covering amino acid 156–181 (C3156-181) potentiated the neuroprotective effect on SGN mediated by BDNF in vitro. The neuroprotective effect of C3/BDNF was reduced to the neuroprotective effect of BDNF alone after the treatment with wortmannin, an inhibitor of the phosphatidylinositol-3-kinase (PI3K).The exoenzyme C3 (wild-type and enzyme-deficient) and the C3 peptide fragment C3154–181 present novel biologically active compounds for the protection of the SGN. The exact underlying intracellular mechanisms that mediate the neuroprotective effect are not clarified yet, but the combination of BDNF (TrkB stimulation) and C3 exoenzyme (RhoA inhibition) can be used to protect SGN in vitro.


2020 ◽  
Vol 10 (8) ◽  
pp. 559 ◽  
Author(s):  
Verena Scheper ◽  
Ira Seidel-Effenberg ◽  
Thomas Lenarz ◽  
Timo Stöver ◽  
Gerrit Paasche

Degeneration of neurons, such as the inner ear spiral ganglion neurons (SGN), may be decelerated or even stopped by neurotrophic factor treatment, such as brain-derived neurotrophic factor (BDNF), as well as electrical stimulation (ES). In a clinical setting, drug treatment of the SGN could start directly during implantation of a cochlear implant, whereas electrical stimulation begins days to weeks later. The present study was conducted to determine the effects of consecutive BDNF and ES treatments on SGN density and electrical responsiveness. An electrode drug delivery device was implanted in guinea pigs 3 weeks after deafening and five experimental groups were established: two groups received intracochlear infusion of artificial perilymph (AP) or BDNF; two groups were treated with AP respectively BDNF in addition to ES (AP + ES, BDNF + ES); and one group received BDNF from the day of implantation until day 34 followed by ES (BDNF ⇨ ES). Electrically evoked auditory brainstem responses were recorded. After one month of treatment, the tissue was harvested and the SGN density was assessed. The results show that consecutive treatment with BDNF and ES was as successful as the simultaneous combined treatment in terms of enhanced SGN density compared to the untreated contralateral side but not in regard to the numbers of protected cells.


2012 ◽  
Vol 233 (1) ◽  
pp. 172-181 ◽  
Author(s):  
Jesper Roland Jørgensen ◽  
Anette Fransson ◽  
Lone Fjord-Larsen ◽  
Lachlan H. Thompson ◽  
Jeffrey P. Houchins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document