scholarly journals Mutation accumulation and the formation of range limits

2015 ◽  
Vol 11 (1) ◽  
pp. 20140871 ◽  
Author(s):  
Roslyn C. Henry ◽  
Kamil A. Bartoń ◽  
Justin M. J. Travis

The dynamics of range formation are important for understanding and predicting species distributions. Here, we focus on a process that has thus far been overlooked in the context of range formation; the accumulation of mutation load. We find that mutation accumulation severely reduces the extent of a range across an environmental gradient, especially when dispersal is limited, growth rate is low and mutations are of intermediate deleterious effect. Our results illustrate the important role deleterious mutations can play in range formation. We highlight this as a necessary focus for further work, noting particularly the potentially conflicting effects dispersal may have in reducing mutation load and simultaneously increasing migration load in marginal populations.

Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 797-806 ◽  
Author(s):  
James D Fry

Abstract High rates of deleterious mutations could severely reduce the fitness of populations, even endangering their persistence; these effects would be mitigated if mutations synergize each others’ effects. An experiment by Mukai in the 1960s gave evidence that in Drosophila melanogaster, viability-depressing mutations occur at the surprisingly high rate of around one per zygote and that the mutations interact synergistically. A later experiment by Ohnishi seemed to support the high mutation rate, but gave no evidence for synergistic epistasis. Both of these studies, however, were flawed by the lack of suitable controls for assessing viability declines of the mutation-accumulation (MA) lines. By comparing homozygous viability of the MA lines to simultaneously estimated heterozygous viability and using estimates of the dominance of mutations in the experiments, I estimate the viability declines relative to an appropriate control. This approach yields two unexpected conclusions. First, in Ohnishi’s experiment as well as in Mukai’s, MA lines showed faster-than-linear declines in viability, indicative of synergistic epistasis. Second, while Mukai’s estimate of the genomic mutation rate is supported, that from Ohnishi’s experiment is an order of magnitude lower. The different results of the experiments most likely resulted from differences in the starting genotypes; even within Mukai’s experiment, a subset of MA lines, which I argue probably resulted from a contamination event, showed much slower viability declines than did the majority of lines. Because different genotypes may show very different mutational behavior, only studies using many founding genotypes can determine the average rate and distribution of effects of mutations relevant to natural populations.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sankar Subramanian

Abstract Objective Domestication of wild animals results in a reduction in the effective population size, and this could affect the deleterious mutation load of domesticated breeds. Furthermore, artificial selection will also contribute to the accumulation of deleterious mutations due to the increased rate of inbreeding among these animals. The process of domestication, founder population size, and artificial selection differ between cattle breeds, which could lead to a variation in their deleterious mutation loads. We investigated this using mitochondrial genome data from 364 animals belonging to 18 cattle breeds of the world. Results Our analysis revealed more than a fivefold difference in the deleterious mutation load among cattle breeds. We also observed a negative correlation between the breed age and the proportion of deleterious amino acid-changing polymorphisms. This suggests a proportionally higher deleterious SNPs in young breeds compared to older breeds. Our results highlight the magnitude of difference in the deleterious mutations present in the mitochondrial genomes of various breeds. The results of this study could be useful in predicting the rate of incidence of genetic diseases in different breeds.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1993-1999 ◽  
Author(s):  
Peter D Keightley

Much population genetics and evolution theory depends on knowledge of genomic mutation rates and distributions of mutation effects for fitness, but most information comes from a few mutation accumulation experiments in Drosophila in which replicated chromosomes are sheltered from natural selection by a balancer chromosome. I show here that data from these experiments imply the existence of a large class of minor viability mutations with approximately equivalent effects. However, analysis of the distribution of viabilities of chromosomes exposed to EMS mutagenesis reveals a qualitatively different distribution of effects lacking such a minor effects class. A possible explanation for this difference is that transposable element insertions, a common class of spontaneous mutation event in Drosophila, frequently generate minor viability effects. This explanation would imply that current estimates of deleterious mutation rates are not generally applicable in evolutionary models, as transposition rates vary widely. Alternatively, much of the apparent decline in viability under spontaneous mutation accumulation could have been nonmutational, perhaps due to selective improvement of balancer chromosomes. This explanation accords well with the data and implies a spontaneous mutation rate for viability two orders of magnitude lower than previously assumed, with most mutation load attributable to major effects.


1999 ◽  
Vol 74 (1) ◽  
pp. 31-42 ◽  
Author(s):  
J. RONFORT

Single-locus equilibrium frequencies of a partially recessive deleterious mutation under the mutation–selection balance model are derived for partially selfing autotetraploid populations. Assuming multiplicative fitness interactions among loci, approximate solutions for the mean fitness and inbreeding depression values are also derived for the multiple locus case and compared with expectations for the diploid model. As in diploids, purging of deleterious mutations through consanguineous matings occurs in autotetraploid populations, i.e. the equilibrium mutation load is a decreasing function of the selfing rate. However, the variation of inbreeding depression with the selfing rate depends strongly on the dominance coefficients associated with the three heterozygous genotypes. Inbreeding depression can either increase or decrease with the selfing rate, and does not always vary monotonically. Expected issues for the evolution of the selfing rate consequently differ depending on the dominance coefficients. In some cases, expectations for the evolution of the selfing rate resemble expectations in diploids; but particular sets of dominance coefficients can be found that lead to either complete selfing or intermediate selfing rates as unique evolutionary stable state.


2021 ◽  
Author(s):  
Emma Berdan ◽  
Alexandre Blanckaert ◽  
Roger K Butlin ◽  
Thomas Flatt ◽  
Tanja Slotte ◽  
...  

Supergenes offer some of the most spectacular examples of long-term balancing selection in nature but their origin and maintenance remain a mystery. A critical aspect of supergenes is reduced recombination between arrangements. Reduced recombination protects adaptive multi-trait phenotypes, but can also lead to degeneration through mutation accumulation. Mutation accumulation can stabilize the system through the emergence of associative overdominance (AOD), destabilize the system, or lead to new evolutionary outcomes. One such outcome is the formation of balanced lethal systems, a maladaptive system where both supergene arrangements have accumulated deleterious mutations to the extent that both homozygotes are inviable, leaving only heterozygotes to reproduce. Here, we perform a simulation study to understand the conditions under which these different outcomes occur, assuming a scenario of introgression after allopatric divergence. We found that AOD aids the invasion of a new supergene arrangement and the establishment of a polymorphism. However, this polymorphism is easily destabilized by further mutation accumulation. While degradation may strengthen AOD, thereby stabilizing the supergene polymorphism, it is often asymmetric, which is the key disrupter of the quasi-equilibrium state of the polymorphism. Furthermore, mechanisms that accelerate degeneration also tend to amplify asymmetric mutation accumulation between the supergene arrangements and vice versa. As the evolution of a balanced lethal system requires symmetric degradation of both arrangements, this leaves highly restricted conditions under which such a system could evolve. We show that small population size and low dominance coefficients are critical factors, as these reduce the efficacy of selection. The dichotomy between the persistence of a polymorphism and degradation of supergene arrangements likely underlies the rarity of balanced lethal systems in nature.


2005 ◽  
Vol 86 (1) ◽  
pp. 41-51 ◽  
Author(s):  
SYLVAIN GLÉMIN

The fate of lethal alleles in populations is of interest in evolutionary and conservation biology for several reasons. For instance, lethals may contribute substantially to inbreeding depression. The frequency of lethal alleles depends on population size, but it is not clear how it is affected by population structure. By analysing the case of the infinite island model by numerical approaches and analytical approximations it is shown that, like population size, population structure affects the fate of lethal alleles if dominance levels are low. Inbreeding depression caused by such alleles is also affected by the population structure, whereas the mutation load is only weakly affected. Heterosis also depends on population structure, but it always remains low, of the order of the mutation rate or less. These patterns are compared with those caused by mildly deleterious mutations to give a general picture of the effect of population structure on inbreeding depression, heterosis, and the mutation load.


2013 ◽  
Vol 280 (1754) ◽  
pp. 20122829 ◽  
Author(s):  
Dan A. Smale ◽  
Thomas Wernberg

Species distributions have shifted in response to global warming in all major ecosystems on the Earth. Despite cogent evidence for these changes, the underlying mechanisms are poorly understood and currently imply gradual shifts. Yet there is an increasing appreciation of the role of discrete events in driving ecological change. We show how a marine heat wave (HW) eliminated a prominent habitat-forming seaweed, Scytothalia dorycarpa , at its warm distribution limit, causing a range contraction of approximately 100 km (approx. 5% of its global distribution). Seawater temperatures during the HW exceeded the seaweed's physiological threshold and caused extirpation of marginal populations, which are unlikely to recover owing to life-history traits and oceanographic processes. Scytothalia dorycarpa is an important canopy-forming seaweed in temperate Australia, and loss of the species at its range edge has caused structural changes at the community level and is likely to have ecosystem-level implications. We show that extreme warming events, which are increasing in magnitude and frequency, can force step-wise changes in species distributions in marine ecosystems. As such, return times of these events have major implications for projections of species distributions and ecosystem structure, which have typically been based on gradual warming trends.


Sign in / Sign up

Export Citation Format

Share Document