scholarly journals The benefits of planar circular mouths on suction feeding performance

2012 ◽  
Vol 9 (73) ◽  
pp. 1767-1773 ◽  
Author(s):  
Tyler Skorczewski ◽  
Angela Cheer ◽  
Peter C. Wainwright

Suction feeding is the most common form of prey capture across aquatic feeding vertebrates and many adaptations that enhance efficiency and performance are expected. Many suction feeders have mechanisms that allow the mouth to form a planar and near-circular opening that is believed to have beneficial hydrodynamic effects. We explore the effects of the flattened and circular mouth opening through computational fluid dynamics simulations that allow comparisons with other mouth profiles. Compared to mouths with lateral notches, we find that the planar mouth opening results in higher flow rates into the mouth and a region of highest flow that is positioned at the centre of the mouth aperture. Planar mouths provide not only for better total fluid flow rates through the mouth but also through the centre of the mouth near where suction feeders position their prey. Circular mouths are shown to provide the quickest capture times for spherical and elliptical prey because they expose the prey item to a large region of high flow. Planar and circular mouths result in higher flow velocities with peak flow located at the centre of the mouth opening and they maximize the capacity of the suction feeders to exert hydrodynamic forces on the prey.

2008 ◽  
Vol 5 (28) ◽  
pp. 1309-1316 ◽  
Author(s):  
Kristin L Bishop ◽  
Peter C Wainwright ◽  
Roi Holzman

In fishes that employ suction feeding, coordinating the timing of peak flow velocity with mouth opening is likely to be an important feature of prey capture success because this will allow the highest forces to be exerted on prey items when the jaws are fully extended and the flow field is at its largest. Although it has long been known that kinematics of buccal expansion in feeding fishes are characterized by an anterior-to-posterior wave of expansion, this pattern has not been incorporated in most previous computational models of suction feeding. As a consequence, these models have failed to correctly predict the timing of peak flow velocity, which according to the currently available empirical data should occur around the time of peak gape. In this study, we use a simple fluid dynamic model to demonstrate that the inclusion of an anterior-to-posterior wave of buccal expansion can correctly reproduce the empirically determined flow velocity profile, although only under very constrained conditions, whereas models that do not allow this wave of expansion inevitably predict peak velocity earlier in the strike, when the gape is less than half of its maximum. The conditions that are required to produce a realistic velocity profile are as follows: (i) a relatively long time lag between mouth opening and expansion of the more posterior parts of the mouth, (ii) a short anterior portion of the mouth relative to more posterior sections, and (iii) a pattern of movement that begins slowly and then rapidly accelerates. Greater maximum velocities were generated in simulations without the anterior-to-posterior wave of expansion, suggesting a trade-off between maximizing fluid speed and coordination of peak fluid speed with peak gape.


2013 ◽  
Vol 10 (82) ◽  
pp. 20121028 ◽  
Author(s):  
Egon Heiss ◽  
Nikolay Natchev ◽  
Michaela Gumpenberger ◽  
Anton Weissenbacher ◽  
Sam Van Wassenbergh

During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction. Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here, we study the cranial morphology, as well as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander ( Andrias davidianus ). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanism that mainly relies on accelerating water by separating the ‘plates’ formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jaw separation. We hypothesize that this modified way of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system.


1980 ◽  
Vol 88 (1) ◽  
pp. 49-72 ◽  
Author(s):  
GEORGE V. LAUDER

The process of prey capture by inertial suction was studied in three species of sunfishes (Lepomis auritus, L. macrochirus, and L. gibbosus) by the simultaneous recording of buccal and opercular cavity pressures in order to test current hydrodynamic models of feeding in fishes. Synchronous high-speed films permitted the correlation of kinematic patterns of jaw bone movement with specific pressure waveforms. Opercular cavity pressures averaged onefifth buccal pressures and pressure magnitude was correlated with prey type. Peak buccal and opercular pressures were −650 cm H2O and −150 cm H2O respectively; peak rate of pressure change was −100 cm H2O/ms. Buccal pressure magnitude varied inversely with degree of predator satiation. Opercular pressure waveforms have an initial positive phase followed by a prolonged negative phase and then a final positive phase. The initial positive pressure may be absent during slow strikes at worms. Buccal pressure waveforms show considerable variability. The modal waveform consists of a sharp negative pressure pulse followed by a positive phase and finally by another pressure reduction. Delayed opercular abduction relative to mouth cavity compression correlates with the presence of a positive buccal phase. The second buccal negative pressure is the result of rapid mouth closing causing a pressure reduction (water hammer effect) as water flow continues posteriorly. These data indicate that (1) the buccal and opercular cavities are functionally separated by a gill curtain of high resistance, (2) that inertial effects of water are important in the description of the suction feeding process, (3) that a reverse flow of water (opercular to buccal cavity) may occur during the early phase of mouth opening prior to establishment of a buccal to opercular flow regime, and (4) current models of respiratory pressure and flow pattern cannot be applied to feeding. Current hydrodynamic models of suction feeding in fishes are re-evaluated in the light of this analysis.


2018 ◽  
Vol 5 (9) ◽  
pp. 181249 ◽  
Author(s):  
Pauline Provini ◽  
Sam Van Wassenbergh

To capture prey by suction, fish generate a flow of water that enters the mouth and exits at the back of the head. It was previously hypothesized that prey-capture performance is improved by a streamlined shape of the posterior region of the pharynx, which enables an unobstructed outflow with minimal hydrodynamic resistance. However, this hypothesis remained untested for several decades. Using computational fluid dynamics simulations, we now managed to quantify the effects of different shapes of the posterior pharynx on the dynamics of suction feeding, based on a feeding act of a sunfish ( Lepomis gibbosus ). In contrast to what was hypothesized, the effects of the imposed variation in shape were negligible: flow velocity patterns remained essentially identical, and the effects on feeding dynamics were negligibly small. This remarkable hydrodynamic insensitivity implies that, in the course of evolution, the observed wedge-like protrusions of the pectoral surfaces of the pharynx probably resulted from spatial constraints and/or mechanical demands on the musculoskeletal linkages, rather than constraints imposed by hydrodynamics. Our study, therefore, exceptionally shows that a streamlined biological shape subjected to fluid flows is not always the result of selection for hydrodynamic improvement.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
T. van Druenen ◽  
B. Blocken

AbstractSome teams aiming for victory in a mountain stage in cycling take control in the uphill sections of the stage. While drafting, the team imposes a high speed at the front of the peloton defending their team leader from opponent’s attacks. Drafting is a well-known strategy on flat or descending sections and has been studied before in this context. However, there are no systematic and extensive studies in the scientific literature on the aerodynamic effect of uphill drafting. Some studies even suggested that for gradients above 7.2% the speeds drop to 17 km/h and the air resistance can be neglected. In this paper, uphill drafting is analyzed and quantified by means of drag reductions and power reductions obtained by computational fluid dynamics simulations validated with wind tunnel measurements. It is shown that even for gradients above 7.2%, drafting can yield substantial benefits. Drafting allows cyclists to save over 7% of power on a slope of 7.5% at a speed of 6 m/s. At a speed of 8 m/s, this reduction can exceed 16%. Sensitivity analyses indicate that significant power savings can be achieved, also with varying bicycle, cyclist, road and environmental characteristics.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2041
Author(s):  
Eva C. Silva ◽  
Álvaro M. Sampaio ◽  
António J. Pontes

This study shows the performance of heat sinks (HS) with different designs under forced convection, varying geometric and boundary parameters, via computational fluid dynamics simulations. Initially, a complete and detailed analysis of the thermal performance of various conventional HS designs was taken. Afterwards, HS designs were modified following some additive manufacturing approaches. The HS performance was compared by measuring their temperatures and pressure drop after 15 s. Smaller diameters/thicknesses and larger fins/pins spacing provided better results. For fins HS, the use of radial fins, with an inverted trapezoidal shape and with larger holes was advantageous. Regarding pins HS, the best option contemplated circular pins in combination with frontal holes in their structure. Additionally, lattice HS, only possible to be produced by additive manufacturing, was also studied. Lower temperatures were obtained with a hexagon unit cell. Lastly, a comparison between the best HS in each category showed a lower thermal resistance for lattice HS. Despite the increase of at least 38% in pressure drop, a consequence of its frontal area, the temperature was 26% and 56% lower when compared to conventional pins and fins HS, respectively, and 9% and 28% lower when compared to the best pins and best fins of this study.


Sign in / Sign up

Export Citation Format

Share Document