scholarly journals High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

2015 ◽  
Vol 12 (103) ◽  
pp. 20141154 ◽  
Author(s):  
Bong Jin Kang ◽  
Jinhyoung Park ◽  
Jieun Kim ◽  
Hyung Ham Kim ◽  
Changyang Lee ◽  
...  

Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s −1 with high accuracy ( p -value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E / E m < 10, E / A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation.

Author(s):  
Lei Sun ◽  
Ching-Ling Lien ◽  
Qiong Wu ◽  
Jin Ho Chang ◽  
K. Kirk Shung

2019 ◽  
Vol 6 (2) ◽  
pp. 16 ◽  
Author(s):  
Suneeta Narumanchi ◽  
Karri Kalervo ◽  
Sanni Perttunen ◽  
Hong Wang ◽  
Katariina Immonen ◽  
...  

The let-7c family of micro-RNAs (miRNAs) is expressed during embryonic development and plays an important role in cell differentiation. We have investigated the role of let-7c in heart regeneration after injury in adult zebrafish. let-7c antagomir or scramble injections were given at one day after cryoinjury (1 dpi). Tissue samples were collected at 7 dpi, 14 dpi and 28 dpi and cardiac function was assessed before cryoinjury, 1 dpi, 7 dpi, 14 dpi and 28 dpi. Inhibition of let-7c increased the rate of fibrinolysis, increased the number of proliferating cell nuclear antigen (PCNA) positive cardiomyocytes at 7 dpi and increased the expression of the epicardial marker raldh2 at 7 dpi. Additionally, cardiac function measured with echocardiography recovered slightly more rapidly after inhibition of let-7c. These results reveal a beneficial role of let-7c inhibition in adult zebrafish heart regeneration.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4094 ◽  
Author(s):  
Sunmi Yeo ◽  
Changhan Yoon ◽  
Ching-Ling Lien ◽  
Tai-Kyong Song ◽  
K. Kirk Shung

This paper reports the feasibility of Nakagami imaging in monitoring the regeneration process of zebrafish hearts in a noninvasive manner. In addition, spectral Doppler waveforms that are typically used to access the diastolic function were measured to validate the performance of Nakagami imaging. A 30-MHz high-frequency ultrasound array transducer was used to acquire backscattered echo signal for spectral Doppler and Nakagami imaging. The performances of both methods were validated with flow and tissue-mimicking phantom experiments. For in vivo experiments, both spectral Doppler and Nakagami imaging were simultaneously obtained from adult zebrafish with amputated hearts. Longitudinal measurements were performed for five zebrafish. From the experiments, the E/A ratio measured using spectral Doppler imaging increased at 3 days post-amputation (3 dpa) and then decreased to the value before amputation, which were consistent with previous studies. Similar results were obtained from the Nakagami imaging where the Nakagami parameter value increased at 3 dpa and decreased to its original value. These results suggested that the Nakagami and spectral Doppler imaging would be useful techniques in monitoring the regeneration of heart or tissues.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Matthew Gemberling ◽  
Ravi Karra ◽  
Amy L Dickson ◽  
Kenneth D Poss

Heart regeneration is limited in adult mammals but occurs naturally in adult zebrafish through the activation of cardiomyocyte division. Several components of the cardiac injury microenvironment have been identified, yet no factor on its own is known to stimulate overt myocardial hyperplasia in a mature, uninjured animal. In this study, we find evidence that Neuregulin1 (Nrg1), previously shown to have mitogenic effects on mammalian cardiomyocytes, is sharply induced in perivascular cells after injury to the adult zebrafish heart. Inhibition of Erbb2, an Nrg1 co-receptor, disrupts cardiomyocyte proliferation in response to injury, whereas myocardial Nrg1 overexpression enhances this proliferation. In uninjured zebrafish, the reactivation of Nrg1 expression induces cardiomyocyte dedifferentiation, overt muscle hyperplasia, epicardial activation, increased vascularization, and causes cardiomegaly through persistent addition of wall myocardium. Our findings identify Nrg1 as a potent, induced mitogen for the endogenous adult heart regeneration program.


EMBO Reports ◽  
2021 ◽  
Author(s):  
Hong Ma ◽  
Ziqing Liu ◽  
Yuchen Yang ◽  
Dong Feng ◽  
Yanhan Dong ◽  
...  

Development ◽  
2021 ◽  
Author(s):  
Hessel Honkoop ◽  
Phong D. Nguyen ◽  
Veronique E.M. van der Velden ◽  
Katharina F. Sonnen ◽  
Jeroen Bakkers

Zebrafish are excellent at regenerating their heart by reinitiating proliferation in pre-existing cardiomyocytes. Studying how zebrafish achieve this holds great potential in developing new strategies to boost mammalian heart regeneration. Nevertheless, the lack of appropriate live imaging tools for the adult zebrafish heart has limited detailed studies into the dynamics underlying cardiomyocyte proliferation. Here, we address this by developing a system in which cardiac slices of the injured zebrafish heart are cultured ex vivo for several days while retaining key regenerative characteristics including cardiomyocyte proliferation. In addition, we show that the cardiac slice culture system is compatible with live timelapse imaging and allows manipulation of regenerating cardiomyocytes with drugs that normally would have toxic effects that prevent its use. Finally, we use the cardiac slices to demonstrate that adult cardiomyocytes with fully assembled sarcomeres can partially disassemble their sarcomeres in a calpain and proteasome dependent manner to progress through nuclear division and cytokinesis. In conclusion, we have developed a cardiac slice culture system, which allows imaging of native cardiomyocyte dynamics in real time to discover cellular mechanisms during heart regeneration.


2019 ◽  
Author(s):  
Anna Garcia-Puig ◽  
Jose Luis Mosquera ◽  
Senda Jiménez-Delgado ◽  
Cristina García-Pastor ◽  
Ignasi Jorba ◽  
...  

AbstractAdult zebrafish, in contrast to mammals, are able to regenerate their hearts in response to injury or experimental amputation. Our understanding of the cellular and molecular bases that underlie this process, although fragmentary, has increased significantly over the last years. However, the role of the extracellular matrix (ECM) during zebrafish heart regeneration has been comparatively rarely explored. Here, we set out to characterize the ECM protein composition in adult zebrafish hearts, and whether it changed during the regenerative response. For this purpose, we first established a decellularization protocol of adult zebrafish ventricles that significantly enriched the yield of ECM proteins. We then performed proteomic analyses of decellularized control hearts and at different times of regeneration. Our results show a dynamic change in ECM protein composition, most evident at the earliest (7 days post-amputation) time-point analyzed. Regeneration associated with sharp increases in specific ECM proteins, and with an overall decrease in collagens and cytoskeletal proteins. We finally tested by atomic force microscopy that the changes in ECM composition translated to decreased ECM stiffness. Our cumulative results identify changes in the protein composition and mechanical properties of the zebrafish heart ECM during regeneration.


Sign in / Sign up

Export Citation Format

Share Document