scholarly journals Hydrodynamic drag constrains head enlargement for mouthbrooding in cichlids

2015 ◽  
Vol 12 (109) ◽  
pp. 20150461 ◽  
Author(s):  
Sam Van Wassenbergh ◽  
Nuno Zavattieri Potes ◽  
Dominique Adriaens

Presumably as an adaptation for mouthbrooding, many cichlid fish species have evolved a prominent sexual dimorphism in the adult head. Since the head of fishes serves as a bow during locomotion, an evolutionary increase in head volume to brood more eggs can trade-off with the hydrodynamic efficiency of swimming. Here, the differences between males and females in three-dimensional shape and size of the external head surfaces and the effect thereof on drag force during locomotion was analysed for the Nile tilapia ( Oreochromis niloticus ), a maternal mouthbrooder. To do so, three-dimensional body surface reconstructions from laser scans and computational fluid dynamics simulations were performed. After scaling the scanned specimens to post-cranial body volume, in order to theoretically equalize propulsive power, the external volume of the head of females was 27% larger than that of males (head length + 14%; head width + 9%). These differences resulted in an approximate 15% increase in drag force. Yet, hydrodynamics imposed important constraints on the adaptation for mouthbrooding as a much more drastic drop in swimming efficiency seems avoided by mainly enlarging the head along the swimming direction.

2006 ◽  
Vol 37 (4) ◽  
pp. 583
Author(s):  
Michael McGowan

This article examines the relatively new fields of colour and shape trade marks. It was initially feared by some academics that the new marks would encroach on the realms of patent and copyright.  However, the traditional requirements of trade mark law, such as functionality and descriptiveness, have meant that trade marks in colour and shape are extremely hard to acquire if they do not have factual distinctiveness. As colour and shape trade marks have no special restrictions, it is proposed that the combination trade mark theory and analysis from the Diamond T case should be used as a way to make them more accessible. The combination analysis can be easily applied because every product has a three dimensional shape and a fourth dimension of colour.


Author(s):  
S. M. FROLOV ◽  
◽  
S. V. Platonov ◽  
K. A. AVDEEV ◽  
V. S. AKSENOV ◽  
...  

To reduce the hydrodynamic drag force to the movement of the boat, an artificial gas cavity is organized under its bottom. Such a cavity partially insulates the bottom from direct contact with water and provides “gas lubrication” by means of forced supply of atmospheric air or exhaust gases from the main propulsion system. A proper longitudinal and transverse shaping of the gas cavity can significantly (by 20%-30%) reduce the hydrodynamic drag of the boat at low (less than 3%) consumption of the propulsion system power for gas supply.


2017 ◽  
Author(s):  
Tatsuya Kitamura ◽  
Hironori Takemoto ◽  
Hisanori Makinae ◽  
Tetsutaro Yamaguchi ◽  
Kotaro Maki

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Luciano Kagami ◽  
Joel Roca-Martínez ◽  
Jose Gavaldá-García ◽  
Pathmanaban Ramasamy ◽  
K. Anton Feenstra ◽  
...  

Abstract Background The SARS-CoV-2 virus, the causative agent of COVID-19, consists of an assembly of proteins that determine its infectious and immunological behavior, as well as its response to therapeutics. Major structural biology efforts on these proteins have already provided essential insights into the mode of action of the virus, as well as avenues for structure-based drug design. However, not all of the SARS-CoV-2 proteins, or regions thereof, have a well-defined three-dimensional structure, and as such might exhibit ambiguous, dynamic behaviour that is not evident from static structure representations, nor from molecular dynamics simulations using these structures. Main We present a website (https://bio2byte.be/sars2/) that provides protein sequence-based predictions of the backbone and side-chain dynamics and conformational propensities of these proteins, as well as derived early folding, disorder, β-sheet aggregation, protein-protein interaction and epitope propensities. These predictions attempt to capture the inherent biophysical propensities encoded in the sequence, rather than context-dependent behaviour such as the final folded state. In addition, we provide the biophysical variation that is observed in homologous proteins, which gives an indication of the limits of their functionally relevant biophysical behaviour. Conclusion The https://bio2byte.be/sars2/ website provides a range of protein sequence-based predictions for 27 SARS-CoV-2 proteins, enabling researchers to form hypotheses about their possible functional modes of action.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chaojian Chen ◽  
Manjesh Kumar Singh ◽  
Katrin Wunderlich ◽  
Sean Harvey ◽  
Colette J. Whitfield ◽  
...  

AbstractThe creation of synthetic polymer nanoobjects with well-defined hierarchical structures is important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Inspired by the programmability and precise three-dimensional architectures of biomolecules, here we demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers. Linear poly(2-hydroxyethyl methacrylate) of different lengths are folded into cyclic polymers and their self-assembly into hierarchical structures is elucidated by various experimental techniques and molecular dynamics simulations. Based on their structural similarity, macrocyclic brush polymers with amphiphilic block side chains are synthesized, which can self-assemble into wormlike and higher-ordered structures. Our work points out the vital role of polymer folding in macromolecular self-assembly and establishes a versatile approach for constructing biomimetic hierarchical assemblies.


i-Perception ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 204166952098231
Author(s):  
Masakazu Ohara ◽  
Juno Kim ◽  
Kowa Koida

Perceiving the shape of three-dimensional objects is essential for interacting with them in daily life. If objects are constructed from different materials, can the human visual system accurately estimate their three-dimensional shape? We varied the thickness, motion, opacity, and specularity of globally convex objects rendered in a photorealistic environment. These objects were presented under either dynamic or static viewing condition. Observers rated the overall convexity of these objects along the depth axis. Our results show that observers perceived solid transparent objects as flatter than the same objects rendered with opaque reflectance properties. Regional variation in local root-mean-square image contrast was shown to provide information that is predictive of perceived surface convexity.


Sign in / Sign up

Export Citation Format

Share Document