scholarly journals On the lift-optimal aspect ratio of a revolving wing at low Reynolds number

2018 ◽  
Vol 15 (143) ◽  
pp. 20170933 ◽  
Author(s):  
T. Jardin ◽  
T. Colonius

Lentink & Dickinson (2009 J. Exp. Biol. 212 , 2705–2719. ( doi:10.1242/jeb.022269 )) showed that rotational acceleration stabilized the leading-edge vortex on revolving, low aspect ratio (AR) wings and hypothesized that a Rossby number of around 3, which is achieved during each half-stroke for a variety of hovering insects, seeds and birds, represents a convergent high-lift solution across a range of scales in nature. Subsequent work has verified that, in particular, the Coriolis acceleration plays a key role in LEV stabilization. Implicit in these results is that there exists an optimal AR for wings revolving about their root, because it is otherwise unclear why, apart from possible morphological reasons, the convergent solution would not occur for an even lower Rossby number. We perform direct numerical simulations of the flow past revolving wings where we vary the AR and Rossby numbers independently by displacing the wing root from the axis of rotation. We show that the optimal lift coefficient represents a compromise between competing trends with competing time scales where the coefficient of lift increases monotonically with AR, holding Rossby number constant, but decreases monotonically with Rossby number, when holding AR constant. For wings revolving about their root, this favours wings of AR between 3 and 4.

2021 ◽  
Vol 11 (6) ◽  
pp. 2450
Author(s):  
Jong-Seob Han ◽  
Christian Breitsamter

A sweptback angle can directly regulate a leading-edge vortex on various aerodynamic devices as well as on the wings of biological flyers, but the effect of a sweptback angle has not yet been sufficiently investigated. Here, we thoroughly investigated the effect of the sweptback angle on aerodynamic characteristics of low-aspect-ratio flat plates at a Reynolds number of 2.85 × 104. Direct force/moment measurements and surface oil-flow visualizations were conducted in the wind-tunnel B at the Technical University of Munich. It was found that while the maximum lift at an aspect ratio of 2.03 remains unchanged, two other aspect ratios of 3.13 and 4.50 show a gradual increment in the maximum lift with an increasing sweptback angle. The largest leading-edge vortex contribution was found at the aspect ratio of 3.13, resulting in a superior lift production at a sufficient sweptback angle. This is similar to that of a revolving/flapping wing, where an aspect ratio around three shows a superior lift production. In the oil-flow patterns, it was observed that while the leading-edge vortices at aspect ratios of 2.03 and 3.13 fully covered the surfaces, the vortex at an aspect ratio of 4.50 only covered up the surface approximately three times the chord, similar to that of a revolving/flapping wing. Based on the pattern at the aspect ratio of 4.50, a critical length of the leading-edge vortex of a sweptback plate was measured as ~3.1 times the chord.


2015 ◽  
Vol 767 ◽  
pp. 497-525 ◽  
Author(s):  
Zakery R. Carr ◽  
Adam C. DeVoria ◽  
Matthew J. Ringuette

AbstractWe employ experiments to study aspect ratio ($\def\AR{A\mkern-8muR}\AR$) effects on the vortex structure, circulation and lift force for flat-plate wings rotating from rest at 45° angle of attack, which represents a simplified hovering-wing half-stroke. We use the time-varying, volumetric $\AR =2$ data of Carr et al. (Exp. Fluids, vol. 54, 2013, pp. 1–26), reconstructed from phase-locked, phase-averaged stereoscopic digital particle image velocimetry (S-DPIV), and an $\AR =4$ volumetric data set matching the span-based Reynolds number ($\mathit{Re}$) of $\AR =2$. For $\AR =1{-}4$ and $\mathit{Re}_{\mathit{span}}$ of $O$($10^{3}$–$10^{4}$), we directly measure the lift force. The total leading-edge-region circulation for $\AR =2$ and 4 compares best overall using a span-based normalization and for matching rotation angles. The total circulation increases across the span to the tip region, and is larger for $\AR =2$. After the startup, the total circulation for each $\AR$ has a similar slope and a slow growth. The first leading-edge vortex (LEV) and the tip vortex (TV) for $\AR =4$ move past the trailing edge, followed by substantial breakdown. For $\AR =2$ the outboard, aft-tilted LEV merges with the TV and resides over the tip, although breakdown also occurs. Where the LEV is ‘stable’ inboard, its circulation saturates for $\AR =2$ and the growth slows for $\AR =4$. Aft LEV tilting reduces the spanwise LEV circulation for each $\AR$. Both positive and negative axial flow are found in the first LEV for $\AR =2$ and 4, with the positive component being somewhat larger. This yields a generally positive (outboard) average vorticity flux. The average lift coefficient is essentially constant with $\AR$ from 1 to 4 during the slow growth phase, although the large-time behaviour shows a slight decrease in lift coefficient with increasing $\AR$. The S-DPIV data are used to obtain the lift impulse and the spanwise and streamwise components contributing to the lift coefficient. The spanwise contribution is similar for $\AR =2$ and 4, due to similar trailing-edge vortex interactions, LEV saturation behaviour and total circulation slopes. However, for $\AR =2$ the streamwise contribution is much larger, because of the stronger, coherent TV and aft-tilted LEV, which will create a relatively lower-pressure region over the tip.


2014 ◽  
Vol 670-671 ◽  
pp. 700-704
Author(s):  
Hong Yan Zhao ◽  
Peng Fei Zhang ◽  
Yun Ma

The flight mechanism of flapping-wing was studied by using the translation-rotation model. We established the flapping-coordinate of the wing, gave the equation of the motion, and simplified the flapping-wing model. The aerodynamic and vortices were simulated by the CFD software of Fluent. The leading-edge vortex generated in the translation phase, and delayed stall mechanism had an important effect on the high lift. In the rotation phase, lift peaks appear due to the wing rapidly rotating and rotational circulation mechanism. The aerodynamics were obtained in different amplitudes, frequencies, angles of attack, the locations of rotating axis and timings of rotation. The influence of these parameters on average lift coefficient is obvious, while it can be ignored to average drag coefficient. Keywords: wing, aerodynamics, vortices, numerical simulation.


AIAA Journal ◽  
2020 ◽  
Vol 58 (7) ◽  
pp. 2806-2819 ◽  
Author(s):  
Hadar Ben-Gida ◽  
Roi Gurka ◽  
Daniel Weihs

2020 ◽  
Vol 61 (9) ◽  
Author(s):  
Lei Dong ◽  
Kwing-So Choi ◽  
Xuerui Mao

Abstract Three-dimensional vortical structures and their interaction over a low-aspect-ratio thin wing have been studied via particle image velocimetry at the chord Reynolds number of $$10^5$$ 10 5 . The maximum lift of this thin wing is found at an angle of attack of $$42^\circ$$ 42 ∘ . The flow separates at the leading-edge and reattaches to the wing surface, forming a strong leading-edge vortex which plays an important role on the total lift. The results show that the induced velocity of the tip vortex increases with the angle of attack, which helps reattach the separated flow and maintains the leading-edge vortex. Turbulent mixing indicated by the high Reynolds stress can be observed near the leading-edge due to an intense interaction between the leading-edge vortex and the tip vortex; however, the reattachment point of the leading-edge vortex moves upstream closer to the wing tip. Graphic abstract


Author(s):  
Christopher Clark ◽  
Graham Pullan ◽  
Eric Curtis ◽  
Frederic Goenaga

Low aspect ratio vanes, often the result of overall engine architecture constraints, create strong secondary flows and high endwall loss. In this paper, a splitter concept is demonstrated that reduces secondary flow strength and improves stage performance. An analytic conceptual study, corroborated by inviscid computations, shows that the total secondary kinetic energy of the secondary flow vortices is reduced when the number of passages is increased and, for a given number of vanes, when the inlet endwall boundary layer is evenly distributed between the passages. Viscous computations show that, for this to be achieved in a splitter configuration, the pressure-side leg of the low aspect ratio vane horseshoe vortex, must enter the adjacent passage (and not “jump” in front of the splitter leading edge). For a target turbine application, four vane designs were produced using a multi-objective optimization approach. These designs represent: current practice for a low aspect ratio vane; a design exempt from thickness constraints; and two designs incorporating splitter vanes. Each geometry is tested experimentally, as a sector, within a low-speed turbine stage. The vane designs with splitters geometries were found to reduce the measured secondary kinetic energy, by up to 85%, to a value similar to the design exempt from thickness constraints. The resulting flowfield was also more uniform in both the circumferential and radial directions. One splitter design was selected for a full annulus test where a mixed-out loss reduction, compared to the current practice design, of 15.3% was measured and the stage efficiency increased by 0.88%.


Sign in / Sign up

Export Citation Format

Share Document