Rolling balance board of adjustable geometry as a tool to assess balancing skill and to estimate reaction time delay

2021 ◽  
Vol 18 (176) ◽  
Author(s):  
Csenge A. Molnar ◽  
Ambrus Zelei ◽  
Tamas Insperger

The relation between balancing performance and reaction time is investigated for human subjects balancing on rolling balance board of adjustable physical parameters: adjustable rolling radius R and adjustable board elevation h . A well-defined measure of balancing performance is whether a subject can or cannot balance on balance board with a given geometry ( R , h ). The balancing ability is linked to the stabilizability of the underlying two-degree-of-freedom mechanical model subject to a delayed proportional–derivative feedback control. Although different sensory perceptions involve different reaction times at different hierarchical feedback loops, their effect is modelled as a single lumped reaction time delay. Stabilizability is investigated in terms of the time delay in the mechanical model: if the delay is larger than a critical value (critical delay), then no stabilizing feedback control exists. Series of balancing trials by 15 human subjects show that it is more difficult to balance on balance board configuration associated with smaller critical delay, than on balance boards associated with larger critical delay. Experiments verify the feature of the mechanical model that a change in the rolling radius R results in larger change in the difficulty of the task than the same change in the board elevation h does. The rolling balance board characterized by the two well-defined parameters R and h can therefore be a useful device to assess human balancing skill and to estimate the corresponding lumped reaction time delay.

Author(s):  
Csenge A. Molnar ◽  
Tamas Insperger

Abstract Human balancing on rolling balance board in the sagittal plane is analyzed such that the geometry of the balance board can be adjusted: the radius R of the wheels and the elevation h between the top of the wheels and the board can be changed. These two parameters have a significant influence on the stability of standing on the board as shown by preliminary experiments. The human body was modeled by a single inverted pendulum, while the balance board was considered by the geometry of the mechanical model. Based on literature, it was assumed that the central nervous system (CNS) controls by signals proportional to the angle and angular velocity of the human body and the balance board and is able to tune the feedback gains with 40% accuracy during the balancing process. To take the reaction time into consideration, operation of the CNS was modeled as a delayed proportional-derivative feedback. The critical time delay for the stabilization process is defined such that if the delay is larger than the critical one then no control gains could stabilize the system. Four balance board configurations were chosen with different wheel radius and the corresponding critical time delays were computed based on the mechanical model. Eight young healthy individuals participated in the experiments. Their task was to perform 60 s long balancing trials on each balance board. The reaction time of the participants was estimated by comparing the numerical results obtained for the critical time delay and their successful and unsuccessful balancing trials. The reaction times were found to be in the range of 0.10–0.15 s which are in good agreement with the literature.


1991 ◽  
Vol 8 (3) ◽  
pp. 221-233 ◽  
Author(s):  
Walter E. Davis ◽  
William A. Sparrow ◽  
Terry Ward

A fractionation technique was employed to determine the locus of reaction time delay in Down syndrome (DS) and other adult subjects with mental retardation (MH). Twenty-three subjects (8 nondisabled, 8 MH, and 7 DS) responded to a light, sound, and combination light/sound signal. Dependent measures of premotor time, motor time, total reaction time, and movement time were obtained during a 20° elbow extension movement and were analyzed separately. As expected, both MH and DS subjects were slower and more variable in their responses than the subjects without disabilities. In turn, DS subjects were significantly slower but not more variable than the MH subjects. There were no significant differences between the DS and MH subjects on movement times. Evidence for both a specific (premotor) and a generalized (both premotor and motor) locus of delay was found. Some difference in signal effect was also found for the DS subjects.


1996 ◽  
Vol 75 (1) ◽  
pp. 412-427 ◽  
Author(s):  
J. M. Groh ◽  
D. L. Sparks

1. We compared the properties of saccades to somatosensory and visual targets. This comparison provides insight into the translation of sensory signals coding target location in different sensory coordinate frameworks into motor commands of a common format. Vibrotactile stimuli were delivered to the hands, which were fixed in position and concealed beneath a barrier. Saccades of different directions and amplitudes were elicited by the same somatosensory target from different initial eye positions. Both monkeys and humans served as subjects. 2. Somatosensory saccades were less accurate than visual saccades in both humans and monkeys. When the barrier concealing the hands was removed, somatosensory saccade accuracy improved. While the hands were concealed, the visual frame of reference provided by room illumination did not greatly affect saccade accuracy: accuracy was not degraded in complete darkness for two of three monkeys. 3. The endpoints of saccades to a single somatosensory target varied with initial eye position for the monkeys, but not for the human subjects. 4. We also found evidence of an effect of limb position on somatosensory saccades: when human subjects performed the task with crossed hands, the incidence of curved saccades increased. Saccades often began in the direction of the unstimulated hand and curved markedly toward the stimulated hand. When one subject was required to delay the saccade by 600-1,000 ms after target onset (the delayed saccade task), the saccades were straight. Somatosensory saccades were also straight when the hands were not crossed. 5. The reaction times of somatosensory saccades were longer than the reaction times of visual saccades, and they decreased as a function of saccade amplitude. The delayed saccade task reduced the differences between somatosensory and visual saccade reaction times. The reaction times of saccades to very dim visual targets increased into the range found for saccades to somatosensory targets. When the saccade target was the combination of the somatosensory and visual stimuli at the same location, the reaction time was slightly lower than for visual targets alone. 6. The peak velocities of somatosensory saccades were lower than those of visual saccades of the same amplitude. The velocities of saccades to combined somatosensory and visual targets were indistinguishable from those of saccades to visual targets alone. The differences between somatosensory and visual saccade velocity were maintained in the delayed trial type. These differences suggest that the main sequence or velocity-amplitude relationship characteristic of saccades depends on the modality of the target. 7. The implications of these modality-dependent differences in accuracy, reaction time, and saccade velocity are discussed with regard to models of the saccade generator and the coordinate transformation necessary for somatosensory saccades.


2007 ◽  
Vol 98 (4) ◽  
pp. 2255-2265 ◽  
Author(s):  
Laurent Madelain ◽  
Lucie Champrenaut ◽  
Alan Chauvin

Studies of reaction-time distributions provide a useful quantitative approach to understand decision processes at the neural level and at the behavioral level. A strong relationship between the spread of latencies and the median is generally accepted even though there has been no attempt to disentangle experimentally these two parameters. Here we test the ability to independently control the median and the variability in reaction times. Reaction times were measured in human subjects instructed to make a discrimination between a target and a distractor in a 2AFC task. In a first experiment, saccadic latencies were measured. In a second experiment, we used manual response reaction times. Subjects were trained to produce four different reaction-time distributions. A reinforcing feedback was given depending on both the variability and the median of the latency distributions. When low variability was reinforced, the standard deviation (SD) of reaction-time distributions were reduced by a factor of two and when high variability was reinforced, the SD returned to baseline level. Our procedure independently affected the spread and the median of the distribution patterns. By fitting the latency distributions using the Reddi and Carpenter LATER model, we found that these effects could be simulated by changing the distribution of the noise affecting the decision process. Our results demonstrate that learned contingencies can affect reaction time variability and support the view that the so-called noise level in decision processes can undergo long-term changes.


1997 ◽  
Vol 85 (2) ◽  
pp. 563-568
Author(s):  
Miya Muroi ◽  
Eiichi Naito ◽  
Michikazu Matsumura

Human subjects exhibit difficulty in initiating two independent, discrete responses in close succession, a difficulty known as the ‘psychological refractory effect.’ It is not yet known whether motor-inhibition processes are under the influence of this effect, as are motor-execution processes. This study examined the temporal changes of subjects' reaction times, interpreted in terms of motor programming for inhibition, in a dual-response Go/No-Go task that required two independent responses in close succession Light subjects performed the task with both a shorter (400 msec.) and a longer interstunulus interval (800 msec). The mean reaction time for the second stimulus (RT2) in the Go response of the 400-msec. condition was significantly longer than that of the 800-msec. condition. For committed error responses during the No-Go trials, the mean RT2 in the 400-msec. condition was longer than that in the 800-msec. condition. The total number of these errors in the 400-msec. condition was significantly greater than that in the 800-msec. condition. These results suggested that both the motor-execution processes and motor-inhibition processes were influenced by the psychological refractory effect.


GeroPsych ◽  
2011 ◽  
Vol 24 (4) ◽  
pp. 169-176 ◽  
Author(s):  
Philippe Rast ◽  
Daniel Zimprich

In order to model within-person (WP) variance in a reaction time task, we applied a mixed location scale model using 335 participants from the second wave of the Zurich Longitudinal Study on Cognitive Aging. The age of the respondents and the performance in another reaction time task were used to explain individual differences in the WP variance. To account for larger variances due to slower reaction times, we also used the average of the predicted individual reaction time (RT) as a predictor for the WP variability. Here, the WP variability was a function of the mean. At the same time, older participants were more variable and those with better performance in another RT task were more consistent in their responses.


2006 ◽  
Vol 20 (3) ◽  
pp. 186-194 ◽  
Author(s):  
Susanne Mayr ◽  
Michael Niedeggen ◽  
Axel Buchner ◽  
Guido Orgs

Responding to a stimulus that had to be ignored previously is usually slowed-down (negative priming effect). This study investigates the reaction time and ERP effects of the negative priming phenomenon in the auditory domain. Thirty participants had to categorize sounds as musical instruments or animal voices. Reaction times were slowed-down in the negative priming condition relative to two control conditions. This effect was stronger for slow reactions (above intraindividual median) than for fast reactions (below intraindividual median). ERP analysis revealed a parietally located negativity of the negative priming condition compared to the control conditions between 550-730 ms poststimulus. This replicates the findings of Mayr, Niedeggen, Buchner, and Pietrowsky (2003) . The ERP correlate was more pronounced for slow trials (above intraindividual median) than for fast trials (below intraindividual median). The dependency of the negative priming effect size on the reaction time level found in the reaction time analysis as well as in the ERP analysis is consistent with both the inhibition as well as the episodic retrieval account of negative priming. A methodological artifact explanation of this effect-size dependency is discussed and discarded.


2004 ◽  
Vol 9 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Sybille Rockstroh ◽  
Karl Schweizer

Effects of four retest-practice sessions separated by 2 h intervals on the relationship between general intelligence and four reaction time tasks (two memory tests: Sternberg's memory scanning, Posner's letter comparison; and two attention tests: continuous attention, attention switching) were examined in a sample of 83 male participants. Reaction times on all tasks were shortened significantly. The effects were most pronounced with respect to the Posner paradigm and smallest with respect to the Sternberg paradigm. The relationship to general intelligence changed after practice for two reaction time tasks. It increased to significance for continuous attention and decreased for the Posner paradigm. These results indicate that the relationship between psychometric intelligence and elementary cognitive tasks depends on the ability of skill acquisition. In the search for the cognitive roots of intelligence the concept of learning seems to be of importance.


Sign in / Sign up

Export Citation Format

Share Document