scholarly journals Stimuli-responsive surfaces for switchable wettability and adhesion

2021 ◽  
Vol 18 (179) ◽  
pp. 20210162
Author(s):  
Chang Li ◽  
Ming Li ◽  
Zhongshi Ni ◽  
Qingwen Guan ◽  
Bamber R. K. Blackman ◽  
...  

Diverse unique surfaces exist in nature, e.g. lotus leaf, rose petal and rice leaf. They show similar contact angles but different adhesion properties. According to the different wettability and adhesion characteristics, this review reclassifies different contact states of droplets on surfaces. Inspired by the biological surfaces, smart artificial surfaces have been developed which respond to external stimuli and consequently switch between different states. Responsive surfaces driven by various stimuli, e.g. stretching, magnetic, photo, electric, temperature, humidity and pH, are discussed. Studies reporting on either atmospheric or underwater environments are discussed. The application of tailoring surface wettability and adhesion includes microfluidics/droplet manipulation, liquid transport and harvesting, water energy harvesting and flexible smart devices. Particular attention is placed on the horizontal comparison of smart surfaces with the same stimuli. Finally, the current challenges and future prospects in this field are also identified.

RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 36623-36641 ◽  
Author(s):  
Fei Guo ◽  
Zhiguang Guo

Recent progress in smart surfaces with responsive wettability upon external stimuli is reviewed and some of the barriers and potentially promising breakthroughs in this field are also briefly discussed.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 465
Author(s):  
Zhaoxin Lao ◽  
Neng Xia ◽  
Shijie Wang ◽  
Tiantian Xu ◽  
Xinyu Wu ◽  
...  

Microactuators, which can transform external stimuli into mechanical motion at microscale, have attracted extensive attention because they can be used to construct microelectromechanical systems (MEMS) and/or microrobots, resulting in extensive applications in a large number of fields such as noninvasive surgery, targeted delivery, and biomedical machines. In contrast to classical 2D MEMS devices, 3D microactuators provide a new platform for the research of stimuli-responsive functional devices. However, traditional planar processing techniques based on photolithography are inadequate in the construction of 3D microstructures. To solve this issue, researchers have proposed many strategies, among which 3D laser printing is becoming a prospective technique to create smart devices at the microscale because of its versatility, adjustability, and flexibility. Here, we review the recent progress in stimulus-responsive 3D microactuators fabricated with 3D laser printing depending on different stimuli. Then, an outlook of the design, fabrication, control, and applications of 3D laser-printed microactuators is propounded with the goal of providing a reference for related research.


Author(s):  
Meenaxi Sharma ◽  
Krishnacharya Khare

Modification of surface wettability (ranging from complete wetting to complete non-wetting) of various surfaces is often required in many applications. Conventionally, it is done using a coating of suitable materials as per the requirement. In this approach, the old coating needs to be replaced every time by a new appropriate one. Alternatively, smart responsive surfaces can show tunable wettability with external stimulus. Electric field, temperature, light, pH, mechanical strain, etc. can be effectively used as external stimuli, and a suitable coating can be incorporated, which responses to the respective stimulus. These surfaces can be used to tune the surface wettability to any extent based on the magnitude of the stimulus. The primary role of the external stimulus is to vary the liquid-solid interfacial energy, which subsequently changes the surface wettability. The biggest advantage of this approach is that the surface wettability can be reversibly tuned. Each of the techniques mentioned above has many advantages along with certain limitations, and the combination of advantages and limitations helps users to choose the right technique for their work. Many recent studies have used this approach to quantify the tuning of the surface wettability and have also demonstrated its potential in various applications.


Author(s):  
Gore S. A. ◽  
Gholve S. B. ◽  
Savalsure S. M. ◽  
Ghodake K. B. ◽  
Bhusnure O. G. ◽  
...  

Smart polymers are materials that respond to small external stimuli. These are also referred as stimuli responsive materials or intelligent materials. Smart polymers that can exhibit stimuli-sensitive properties are becoming important in many commercial applications. These polymers can change shape, strength and pore size based on external factors such as temperature, pH and stress. The stimuli include salt, UV irradiation, temperature, pH, magnetic or electric field, ionic factors etc. Smart polymers are very promising applicants in drug delivery, tissue engineering, cell culture, gene carriers, textile engineering, oil recovery, radioactive wastage and protein purification. The study is focused on the entire features of smart polymers and their most recent and relevant applications. Water soluble polymers with tunable lower critical solution temperature (LCST) are of increasing interest for biological applications such as cell patterning, smart drug release, DNA sequencing etc.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 114
Author(s):  
Chang Lu ◽  
Qingjian Lu ◽  
Min Gao ◽  
Yuan Lin

The reversible and multi-stimuli responsive insulator-metal transition of VO2, which enables dynamic modulation over the terahertz (THz) regime, has attracted plenty of attention for its potential applications in versatile active THz devices. Moreover, the investigation into the growth mechanism of VO2 films has led to improved film processing, more capable modulation and enhanced device compatibility into diverse THz applications. THz devices with VO2 as the key components exhibit remarkable response to external stimuli, which is not only applicable in THz modulators but also in rewritable optical memories by virtue of the intrinsic hysteresis behaviour of VO2. Depending on the predesigned device structure, the insulator-metal transition (IMT) of VO2 component can be controlled through thermal, electrical or optical methods. Recent research has paid special attention to the ultrafast modulation phenomenon observed in the photoinduced IMT, enabled by an intense femtosecond laser (fs laser) which supports “quasi-simultaneous” IMT within 1 ps. This progress report reviews the current state of the field, focusing on the material nature that gives rise to the modulation-allowed IMT for THz applications. An overview is presented of numerous IMT stimuli approaches with special emphasis on the underlying physical mechanisms. Subsequently, active manipulation of THz waves through pure VO2 film and VO2 hybrid metamaterials is surveyed, highlighting that VO2 can provide active modulation for a wide variety of applications. Finally, the common characteristics and future development directions of VO2-based tuneable THz devices are discussed.


2021 ◽  
Vol 5 (4) ◽  
pp. 101
Author(s):  
Menglian Wei ◽  
Yu Wan ◽  
Xueji Zhang

Metal-organic framework (MOF) based stimuli-responsive polymers (coordination polymers) exhibit reversible phase-transition behavior and demonstrate attractive properties that are capable of altering physical and/or chemical properties upon exposure to external stimuli, including pH, temperature, ions, etc., in a dynamic fashion. Thus, their conformational change can be imitated by the adsorption/desorption of target analytes (guest molecules), temperature or pressure changes, and electromagnetic field manipulation. MOF-based stimuli responsive polymers have received great attention due to their advanced optical properties and variety of applications. Herein, we summarized some recent progress on MOF-based stimuli-responsive polymers (SRPs) classified by physical and chemical responsiveness, including temperature, pressure, electricity, pH, metal ions, gases, alcohol and multi-targets.


2015 ◽  
Vol 27 (27) ◽  
pp. 4062-4068 ◽  
Author(s):  
Xu Huang ◽  
Yajuan Sun ◽  
Siowling Soh

2021 ◽  
Author(s):  
Ruosen Xie ◽  
Yuyuan Wang ◽  
Shaoqin Gong

The CRISPR–Cas9 system is a powerful tool for genome editing, which can potentially lead to new therapies for genetic diseases. Up to date, various viral and non-viral delivery systems have...


Sign in / Sign up

Export Citation Format

Share Document