scholarly journals Bronchoconstriction: a potential missing link in airway remodelling

Open Biology ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 200254
Author(s):  
Michael J. O'Sullivan ◽  
Thien-Khoi N. Phung ◽  
Jin-Ah Park

In asthma, progressive structural changes of the airway wall are collectively termed airway remodelling. Despite its deleterious effect on lung function, airway remodelling is incompletely understood. As one of the important causes leading to airway remodelling, here we discuss the significance of mechanical forces that are produced in the narrowed airway during asthma exacerbation, as a driving force of airway remodelling. We cover in vitro , ex vivo and in vivo work in this field, and discuss up-to-date literature supporting the idea that bronchoconstriction may be the missing link in a comprehensive understanding of airway remodelling in asthma.

2020 ◽  
Vol 31 (10) ◽  
pp. 2312-2325
Author(s):  
Wei Cao ◽  
Liling Wu ◽  
Xiaodong Zhang ◽  
Jing Zhou ◽  
Jian Wang ◽  
...  

BackgroundHypertension commonly complicates CKD. Vascular smooth muscle cells (VSMCs) of resistance arteries receive signals from the sympathetic nervous system that induce an endothelial cell (EC)–dependent anticontractile response that moderates vasoconstriction. However, the specific role of this pathway in the enhanced vasoconstriction in CKD is unknown.MethodsA mouse model of CKD hypertension generated with 5/6-nephrectomy (5/6Nx) was used to investigate the hypothesis that an impaired anticontractile mechanism enhances sympathetic vasoconstriction. In vivo, ex vivo (isolated mesenteric resistance arteries), and in vitro (VSMC and EC coculture) models demonstrated neurovascular transmission and its contribution to vascular resistance.ResultsBy 4 weeks, 5/6Nx mice (versus sham) had augmented increases in mesenteric vascular resistance and mean arterial pressure with carotid artery occlusion, accompanied by decreased connexin 43 (Cx43) expression at myoendothelial junctions (MEJs), impaired gap junction function, decreased EC-dependent hyperpolarization (EDH), and enhanced contractions. Exposure of VSMCs to NE for 24 hours in a vascular cell coculture decreased MEJ Cx43 expression and MEJ gap junction function. These changes preceded vascular structural changes evident only at week 8. Inhibition of central sympathetic outflow or transfection of Cx43 normalized neurovascular transmission and vasoconstriction in 5/6Nx mice.Conclusions5/6Nx mice have enhanced neurovascular transmission and vasoconstriction from an impaired EDH anticontractile component before vascular structural changes. These neurovascular changes depend on an enhanced sympathetic discharge that impairs the expression of Cx43 in gap junctions at MEJs, thereby interrupting EDH responses that normally moderate vascular tone. Dysregulation of neurovascular transmission may contribute to the development of hypertension in CKD.


2020 ◽  
Vol 29 (157) ◽  
pp. 190123 ◽  
Author(s):  
Punnam Chander Veerati ◽  
Jennifer A. Mitchel ◽  
Andrew T. Reid ◽  
Darryl A. Knight ◽  
Nathan W. Bartlett ◽  
...  

The lung is a mechanically active organ, but uncontrolled or excessive mechanical forces disrupt normal lung function and can contribute to the development of disease. In asthma, bronchoconstriction leads to airway narrowing and airway wall buckling. A growing body of evidence suggests that pathological mechanical forces induced by airway buckling alone can perpetuate disease processes in asthma. Here, we review the data obtained from a variety of experimental models, including in vitro, ex vivo and in vivo approaches, which have been used to study the impact of mechanical forces in asthma pathogenesis. We review the evidence showing that mechanical compression alters the biological and biophysical properties of the airway epithelium, including activation of the epidermal growth factor receptor pathway, overproduction of asthma-associated mediators, goblet cell hyperplasia, and a phase transition of epithelium from a static jammed phase to a mobile unjammed phase. We also define questions regarding the impact of mechanical forces on the pathology of asthma, with a focus on known triggers of asthma exacerbations such as viral infection.


2008 ◽  
Vol 104 (3) ◽  
pp. 610-615 ◽  
Author(s):  
Z. Xue ◽  
L. Zhang ◽  
Y. Liu ◽  
S. J. Gunst ◽  
R. S. Tepper

The mechanical stress imposed on the lungs during breathing is an important modulator of airway responsiveness in vivo. Our recent study demonstrated that continuous positive airway pressure applied to the lungs of nonanesthetized, tracheotomized rabbits for 4 days decreased lower respiratory system responsiveness to challenge with ACh (Xue Z, Zhang L, Ramchandani R, Liu Y, Antony VB, Gunst SJ, Tepper RS. J. Appl Physiol 99: 677–682, 2005). In addition, airway segments excised from the lungs of these animals and studied in vitro exhibited reduced contractility. However, the mechanism for this reduction in contractility was not determined. The stress-induced decrease in airway responsiveness could have resulted from alterations in the excitation-contraction coupling mechanisms of the smooth muscle cells, or it might reflect changes in the structure and/or composition of the airway wall tissues. In the present study, we assessed the effect of prolonged chronic stress of the lungs in vivo on airway smooth muscle force generation, myosin light chain phosphorylation, and airway wall structure. To enhance the potential development of stress-induced structural changes, we applied mechanical stress for a prolonged period of time of 2–3 wk. Our results demonstrate a direct connection between the decreased airway responsiveness caused by chronic mechanical stress of the lungs in vivo and a persistent decrease in contractile protein activation in the airway smooth muscle isolated from those lungs. The chronic stress also caused an increase in airway size but no detectable changes in the composition of the airway wall.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 802
Author(s):  
Shamil Akhmedov ◽  
Sergey Afanasyev ◽  
Marina Trusova ◽  
Pavel Postnikov ◽  
Yulia Rogovskaya ◽  
...  

Atherosclerosis, a systematic degenerative disease related to the buildup of plaques in human vessels, remains the major cause of morbidity in the field of cardiovascular health problems, which are the number one cause of death globally. Novel atheroprotective HDL-mimicking chemically modified carbon-coated iron nanoparticles (Fe@C NPs) were produced by gas-phase synthesis and modified with organic functional groups of a lipophilic nature. Modified and non-modified Fe@C NPs, immobilized with polycaprolactone on stainless steel, showed high cytocompatibility in human endothelial cell culture. Furthermore, after ex vivo treatment of native atherosclerotic plaques obtained during open carotid endarterectomy surgery, Fe@C NPs penetrated the inner structures and caused structural changes of atherosclerotic plaques, depending on the period of implantation in Wistar rats, serving as a natural bioreactor. The high biocompatibility of the Fe@C NPs shows great potential in the treatment of atherosclerosis disease as an active substance of stent coatings to prevent restenosis and the formation of atherosclerotic plaques.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Gaël Dournes ◽  
François Laurent

Airway remodelling is a well-established feature in asthma and chronic obstructive lung disease (COPD), secondary to chronic airway inflammation. The structural changes found on pathological examination of remodelled airway wall have been shown to display similarities but also differences. Computed tomography (CT) is today a remarkable tool to assess airway wall morphologyin vivosince submillimetric acquisitions over the whole lung volume could be obtained allowing 3D evaluation. Recently, CT-derived indices extracted from CT images have been described and are thought to assess airway remodelling. This may help understand the complex mechanism underlying the remodelling process, which is still not fully understood. This paper summarizes the various methods described to quantify airway remodelling in asthma and COPD using CT, and similarities and differences between both diseases will be emphasized.


1999 ◽  
Vol 86 (3) ◽  
pp. 932-937 ◽  
Author(s):  
H. W. Mitchell ◽  
D. J. Turner ◽  
P. R. Gray ◽  
P. K. McFawn

Airway wall remodeling in response to inflammation might alter load on airway smooth muscle and/or change airway wall stability. We therefore determined airway wall compliance and closing pressures in an animal model. Weanling pigs were sensitized to ovalbumin (OVA; ip and sc, n = 6) and were subsequently challenged three times with OVA aerosol. Control pigs received 0.9% NaCl ( n = 4) in place of OVA aerosol. Bronchoconstriction in vivo was assessed from lung resistance and dynamic compliance. Semistatic airway compliance was recorded ex vivo in isolated segments of bronchus, after the final OVA aerosol or 0.9% NaCl challenge. Internally or externally applied pressure needed to close bronchial segments was determined in the absence or presence of carbachol (1 μM). Sensitized pig lungs exhibited immediate bronchoconstriction to OVA aerosol and also peribronchial accumulations of monocytes and granulocytes. Compliance was reduced in sensitized bronchi in vitro ( P < 0.01), and closing pressures were increased ( P< 0.05). In the presence of carbachol, closing pressures of control and sensitized bronchi were not different. We conclude that sensitization and/or inflammation increases airway load and airway stability.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


1992 ◽  
Vol 68 (06) ◽  
pp. 687-693 ◽  
Author(s):  
P T Larsson ◽  
N H Wallén ◽  
A Martinsson ◽  
N Egberg ◽  
P Hjemdahl

SummaryThe significance of platelet β-adrenoceptors for platelet responses to adrenergic stimuli in vivo and in vitro was studied in healthy volunteers. Low dose infusion of the β-adrenoceptor agonist isoprenaline decreased platelet aggregability in vivo as measured by ex vivo filtragometry. Infusion of adrenaline, a mixed α- and β-adrenoceptor agonist, increased platelet aggregability in vivo markedly, as measured by ex vivo filtragometry and plasma β-thromboglobulin levels. Adrenaline levels were 3–4 nM in venous plasma during infusion. Both adrenaline and high dose isoprenaline elevated plasma von Willebrand factor antigen levels β-Blockade by propranolol did not alter our measures of platelet aggregability at rest or during adrenaline infusions, but inhibited adrenaline-induced increases in vWf:ag. In a model using filtragometry to assess platelet aggregability in whole blood in vitro, propranolol enhanced the proaggregatory actions of 5 nM, but not of 10 nM adrenaline. The present data suggest that β-adrenoceptor stimulation can inhibit platelet function in vivo but that effects of adrenaline at high physiological concentrations are dominated by an α-adrenoceptor mediated proaggregatory action.


1979 ◽  
Vol 41 (03) ◽  
pp. 465-474 ◽  
Author(s):  
Marcia R Stelzer ◽  
Thomas S Burns ◽  
Robert N Saunders

SummaryThe relationship between the effects of suloctidil in vivo as an antiplatelet agent and in vitro as a modifier of platelet serotonin (5-HT) parameters was investigated. Suloctidil was found to be effective in reducing platelet aggregates formation in the retired breeder rat as determined using the platelet aggregate ratio method (PAR) with an ED50 of 16.1 mg/kg 24 hours post administration. In contrast to the hypothesis that 5-HT depletion is involved in the anti-aggregatory mechanism of suloctidil, no correlation was found between platelet 5- HT content and this antiplatelet activity. Reduction of platelet 5-HT content required multiple injections of high doses (100 mg/kg/day) of suloctidil. Suloctidil administration for 8 days at 100 mg/kg/day, which lowered platelet 5-HT content by 50%, resulted in no permanent effect on ex vivo platelet 5-HT uptake or thrombin-induced release, nor alteration in the plasma 5-HT level. However, these platelets exhibited a short-lived, significant increase in percent leakage of 5-HT after 30 minutes of incubation. Therefore, suloctidil treatment at high doses may with time result in platelet 5-HT depletion, however this effect is probably not related to the primary anti-aggregatory activity of the drug.


Sign in / Sign up

Export Citation Format

Share Document