scholarly journals What determines eukaryotic translation elongation: recent molecular and quantitative analyses of protein synthesis

Open Biology ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 200292
Author(s):  
Nagammal Neelagandan ◽  
Irene Lamberti ◽  
Hugo J. F. Carvalho ◽  
Cédric Gobet ◽  
Felix Naef

Protein synthesis from mRNA is an energy-intensive and tightly controlled cellular process. Translation elongation is a well-coordinated, multifactorial step in translation that undergoes dynamic regulation owing to cellular state and environmental determinants. Recent studies involving genome-wide approaches have uncovered some crucial aspects of translation elongation including the mRNA itself and the nascent polypeptide chain. Additionally, these studies have fuelled quantitative and mathematical modelling of translation elongation. In this review, we provide a comprehensive overview of the key determinants of translation elongation. We discuss consequences of ribosome stalling or collision, and how the cells regulate translation in case of such events. Next, we review theoretical approaches and widely used mathematical models that have become an essential ingredient to interpret complex molecular datasets and study translation dynamics quantitatively. Finally, we review recent advances in live-cell reporter and related analysis techniques, to monitor the translation dynamics of single cells and single-mRNA molecules in real time.

Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 84 ◽  
Author(s):  
Thomas Philipp Hoernes ◽  
David Heimdörfer ◽  
Daniel Köstner ◽  
Klaus Faserl ◽  
Felix Nußbaumer ◽  
...  

RNA modifications are crucial factors for efficient protein synthesis. All classes of RNAs that are involved in translation are modified to different extents. Recently, mRNA modifications and their impact on gene regulation became a focus of interest because they can exert a variety of effects on the fate of mRNAs. mRNA modifications within coding sequences can either directly or indirectly interfere with protein synthesis. In order to investigate the roles of various natural occurring modified nucleotides, we site-specifically introduced them into the coding sequence of reporter mRNAs and subsequently translated them in HEK293T cells. The analysis of the respective protein products revealed a strong position-dependent impact of RNA modifications on translation efficiency and accuracy. Whereas a single 5-methylcytosine (m5C) or pseudouridine () did not reduce product yields, N1-methyladenosine (m1A) generally impeded the translation of the respective modified mRNA. An inhibitory effect of 2′O-methlyated nucleotides (Nm) and N6-methyladenosine (m6A) was strongly dependent on their position within the codon. Finally, we could not attribute any miscoding potential to the set of mRNA modifications tested in HEK293T cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mehdi Eshraghi ◽  
Pabalu P. Karunadharma ◽  
Juliana Blin ◽  
Neelam Shahani ◽  
Emiliano P. Ricci ◽  
...  

AbstractThe polyglutamine expansion of huntingtin (mHTT) causes Huntington disease (HD) and neurodegeneration, but the mechanisms remain unclear. Here, we found that mHtt promotes ribosome stalling and suppresses protein synthesis in mouse HD striatal neuronal cells. Depletion of mHtt enhances protein synthesis and increases the speed of ribosomal translocation, while mHtt directly inhibits protein synthesis in vitro. Fmrp, a known regulator of ribosome stalling, is upregulated in HD, but its depletion has no discernible effect on protein synthesis or ribosome stalling in HD cells. We found interactions of ribosomal proteins and translating ribosomes with mHtt. High-resolution global ribosome footprint profiling (Ribo-Seq) and mRNA-Seq indicates a widespread shift in ribosome occupancy toward the 5′ and 3′ end and unique single-codon pauses on selected mRNA targets in HD cells, compared to controls. Thus, mHtt impedes ribosomal translocation during translation elongation, a mechanistic defect that can be exploited for HD therapeutics.


1998 ◽  
Vol 336 (3) ◽  
pp. 525-529 ◽  
Author(s):  
Tricia A. DIGGLE ◽  
Nicholas T. REDPATH ◽  
Kate J. HEESOM ◽  
Richard M. DENTON

Treatment of primary rat epididymal adipocytes or 3T3-L1 adipocytes with various agents which increase cAMP led to the phosphorylation of eukaryotic translation elongation factor-2 (eEF-2). The increase in eEF-2 phosphorylation was a consequence of the activation of eEF-2 kinase (eEF-2K), which is a Ca2+/calmodulin-dependent kinase. eEF-2K was shown to be essentially inactive at less than 0.1 µM free Ca2+ when measured in cell-free extracts. Treatment of adipocytes with isoproterenol induced Ca2+-independent eEF-2K activity, and an 8–10-fold activation of eEF-2K was observed at Ca2+ concentrations of less than 0.1 µM. Increased cAMP in 3T3-L1 adipocytes led to the inhibition of total protein synthesis and decreased the rate of polypeptide-chain elongation. We also show that the phosphorylation of eEF-2 and the activity of eEF-2K are insulin-regulated in adipocytes. These results demonstrate a novel mechanism for the control of protein synthesis by hormones which act by increasing cytoplasmic cAMP.


2019 ◽  
Vol 295 (6) ◽  
pp. 1694-1703
Author(s):  
Mélissanne de Wispelaere ◽  
Margot Carocci ◽  
Dominique J. Burri ◽  
William J. Neidermyer ◽  
Calla M. Olson ◽  
...  

Small-molecule inhibitors of translation are critical tools to study the molecular mechanisms of protein synthesis. In this study, we sought to characterize how QL47, a host-targeted, small-molecule antiviral agent, inhibits steady-state viral protein expression. We demonstrate that this small molecule broadly inhibits both viral and host protein synthesis and targets a translation step specific to eukaryotic cells. We show that QL47 inhibits protein neosynthesis initiated by both canonical cap-driven and noncanonical initiation strategies, most likely by targeting an early step in translation elongation. Our findings thus establish QL47 as a new small-molecule inhibitor that can be utilized to probe the eukaryotic translation machinery and that can be further developed as a new therapeutic agent.


Sign in / Sign up

Export Citation Format

Share Document