scholarly journals Historical gene flow constraints in a northeastern Atlantic fish: phylogeography of the ballan wrasse Labrus bergylta across its distribution range

2017 ◽  
Vol 4 (2) ◽  
pp. 160773 ◽  
Author(s):  
Frederico Almada ◽  
Sara M. Francisco ◽  
Cristina S. Lima ◽  
Richard FitzGerald ◽  
Luca Mirimin ◽  
...  

The distribution and demographic patterns of marine organisms in the north Atlantic were largely shaped by climatic changes during the Pleistocene, when recurrent glacial maxima forced them to move south or to survive in northern peri-glacial refugia. These patterns were also influenced by biological and ecological factors intrinsic to each species, namely their dispersion ability. The ballan wrasse ( Labrus bergylta ), the largest labrid fish along Europe's continental margins, is a target for fisheries and aquaculture industry. The phylogeographic pattern, population structure, potential glacial refugia and recolonization routes for this species were assessed across its full distribution range, using mitochondrial and nuclear markers. The existence of a marked population structure can reflect both recolonization from three distinct glacial refugia and current and past oceanographic circulation patterns. Although isolated in present times, shared haplotypes between continental and Azores populations and historical exchange of migrants in both directions point to a common origin of L. bergylta . This situation is likely to be maintained and/or accentuated by current circulation patterns in the north Atlantic, and may lead to incipient speciation in the already distinct Azorean population. Future monitoring of this species is crucial to evaluate how this species is coping with current environmental changes.

2003 ◽  
Vol 5 ◽  
pp. 41 ◽  
Author(s):  
Christina Lockyer

Wide-ranging methods that have been used to determine population structure, including distribution, life history, biology, ecological factors such as diet and contaminant loads, morphology and genetics, are reviewed. The importance of determining population sub-structure of harbour porpoise throughout the North Atlantic, especially in regions affected by incidental take in fisheries, is discussed in relation to management measures. Some practical proposals are made for integrating diverse information about populations, using the phylogeographic approach, for thepurpose of evaluating the need to manage putative subpopulations separately. Examples focusingon the North and Baltic seas areas are used in this discussion, with some reference to other areas. It is concluded that the existing IWC proposal for 13 populations in the North Atlantic is generally supported, but with some refinement and modification; in particular, allowing sub-divisions in the area through the North Sea to the Baltic.


2020 ◽  
Author(s):  
Yacine Ben Chehida ◽  
Roisin Loughnane ◽  
Julie Thumloup ◽  
Kristin Kaschner ◽  
Cristina Garilao ◽  
...  

AbstractUnderstanding a species response to past environmental changes can help forecast how they will cope with ongoing climate changes. Harbor porpoises are widely distributed in the North Atlantic and were deeply impacted by the Pleistocene changes with the split of three sub-species. Despite major impacts of fisheries on natural populations, little is known about population connectivity and dispersal, how they reacted to the Pleistocene changes and how they will evolve in the future. Here, we used phylogenetics, population genetics, and predictive habitat modelling to investigate population structure and phylogeographic history of the North Atlantic porpoises. A total of 925 porpoises were characterized at 10 microsatellite loci and one-quarter of the mitogenome (mtDNA). A highly divergent mtDNA lineage was uncovered in one porpoise off Western Greenland, suggesting that a cryptic group may occur and could belong to a recently discovered mesopelagic ecotype off Greenland. Aside from it and the southern sub-species, spatial genetic variation showed that porpoises from both sides of the North Atlantic form a continuous system belonging to the same subspecies (Phocoena phocoena phoceona). Yet, we identified important departures from random mating and restricted intergenerational dispersal forming a highly significant isolation-by-distance (IBD) at both mtDNA and nuclear markers. A ten times stronger IBD at mtDNA compared to nuclear loci supported previous evidence of female philopatry. Together with the lack of spatial trends in genetic diversity, this IBD suggests that migration-drift equilibrium has been reached, erasing any genetic signal of a leading-edge effect that accompanied the predicted recolonization of the northern habitats freed from Pleistocene ice. These results illuminate the processes shaping porpoise population structure and provide a framework for designing conservation strategies and forecasting future population evolution.


2020 ◽  
Author(s):  
Jasmin M. Link ◽  
Norbert Frank

<p>Glacial Termination V is one of the most extreme glacial-interglacial transitions of the past 800 ka [1]. However, the changes in orbital forcing from Marine Isotope Stage (MIS) 12 to 11 are comparatively weak. In addition, MIS 11c is exceptionally distinct compared to other interglacials with for example a longer duration [2] and a higher-than-present sea level [3] despite a relative low incoming insolation. Therefore, the term “MIS 11 paradox” was coined [4]. However, only little is known about the Atlantic overturning circulation during this time interval [e.g. 5,6].</p><p>Here, we present Atlantic-wide deep water circulation patterns spanning the glacial maximum of MIS 12, Termination V, and MIS 11. Therefore, sediment cores throughout the Atlantic were analyzed regarding their Nd isotopic composition of authigenic coatings to reconstruct the provenance of the prevailing bottom water masses.</p><p>During the glacial maximum of MIS 12, the deep Atlantic Ocean was bathed with a higher amount of southern sourced water compared to the following interglacial. Termination V is represented by a sharp transition in the high-accumulating sites from the North Atlantic with a switch to northern sourced water masses. MIS 11 is characterized through an active deep water formation in the North Atlantic with active overflows from the Nordic Seas, only disrupted by a short deterioration. A strong export of northern sourced water masses to the South Atlantic points to an overall strong overturning circulation.</p><p> </p><p>[1] Lang and Wolff 2011, Climate of the Past 7: 361-380.</p><p>[2] Candy et al. 2014, Earth-Science Reviews 128: 18-51.</p><p>[3] Dutton et al. 2015, Science 349: aaa4019.</p><p>[4] Berger and Wefer 2003, Geophysical Monograph 137: 41-60.</p><p>[5] Dickson et al. 2009, Nature Geoscience 2: 428-433.</p><p>[6] Vázquez Riveiros et al. 2013, EPSL 371-372: 258-268.</p>


Author(s):  
Paul R Berg ◽  
Per E Jorde ◽  
Kevin A Glover ◽  
Geir Dahle ◽  
John B Taggart ◽  
...  

Abstract The advent of novel genetic methods has made it possible to investigate population structure and connectivity in mobile marine fish species: knowledge of which is essential to ensure a sustainable fishery. Haddock (Melanogrammus aeglefinus) is a highly exploited marine teleost distributed along the coast and continental shelf on both sides of the North Atlantic Ocean. However, little is known about its population structure. Here, we present the first study using single-nucleotide polymorphism (SNP) markers to assess the genetic population structure of haddock at multiple geographic scales, from the trans-Atlantic to the local (fjord) level. Genotyping 138 SNP loci in 1329 individuals from 19 locations across the North Atlantic revealed three main genetic clusters, consisting of a Northwest Atlantic cluster, a Northeast Arctic cluster, and a Northeast Atlantic cluster. We also observed a genetically distinct fjord population and a pattern of isolation by distance in the Northeast Atlantic. Our results contrast with the current management regime for this species in the Northeast Atlantic, as we found structure within some management areas. The study adds to the growing recognition of population structuring in marine organisms in general, and fishes in particular, and is of clear relevance for the management of haddock in the Northeast Atlantic.


Sign in / Sign up

Export Citation Format

Share Document