scholarly journals In situ investigations of the phase change behaviour of tungsten oxide nanostructures

2018 ◽  
Vol 5 (4) ◽  
pp. 171932 ◽  
Author(s):  
Kunyapat Thummavichai ◽  
Nannan Wang ◽  
Fang Xu ◽  
Graham Rance ◽  
Yongda Xia ◽  
...  

This study uses two in situ techniques to investigate the geometry and phase change behaviour of bundled ultrathin W 18 O 49 nanowires and WO 3 nanoparticles. The in situ X-ray diffraction (XRD) results have shown that the phase transition of WO 3 nanoparticles occurs in sequence from monoclinic (room temperature) → orthorhombic (350°C) → tetragonal (800°C), akin to bulk WO 3 ; however, W 18 O 49 nanowires remain stable as the monoclinic phase up to 500°C, after which a complete oxidation to WO 3 and transformation to the orthorhombic β-phase at 550°C is observed. The in situ Raman spectroscopy investigations have revealed the Raman peak downshifts as the temperature increases, and have identified the 187.6 cm −1 as the fingerprint band for the phase transition from γ- to β-phase of the WO 3 nanoparticle. Furthermore, WO 3 nanoparticles exhibit the γ- to β-phase conversion at 275°C, which is about 75°C lower than the relaxation temperature of 350°C for the monoclinic γ-W 18 O 49 nanowires. These new fundamental understandings on the phase transition behaviour offer important guidance for the design and development of tungsten oxide-based nanodevices by defining their allowed operating conditions.

Author(s):  
Rebecca Scatena ◽  
Michał Andrzejewski ◽  
Roger D Johnson ◽  
Piero Macchi

Through in-situ, high-pressure x-ray diffraction experiments we have shown that the homoleptic perovskite-like coordination polymer [(CH3)2NH2]Cu(HCOO)3 undergoes a pressure-induced orbital reordering phase transition above 5.20 GPa. This transition is distinct...


2021 ◽  
Vol 118 (13) ◽  
pp. 132903
Author(s):  
Mao-Hua Zhang ◽  
Changhao Zhao ◽  
Lovro Fulanović ◽  
Jürgen Rödel ◽  
Nikola Novak ◽  
...  

2008 ◽  
Vol 403 ◽  
pp. 27-30
Author(s):  
S. Chockalingam ◽  
J.P. Kelly ◽  
V.R.W. Amarakoon ◽  
James R. Varner

Microwave sintered Si3N4-MgO system that contains 2, 4 and 10 wt% of ZrO2 as secondary particulates were investigated with respect to phase transformation and microstructure development. The experimental results of microwave sintered samples were compared with conventional methods. Complete α to β phase transformation was observed in the case of microwave sintered samples due to the volumetric nature of microwave heating. High temperature X-ray diffraction (HTXRD) analysis was performed to study in-situ the oxidation behavior of Si3N4 specimens. Si3N4 specimens with 10 wt % ZrO2 were exposed to air at temperature between 25°C and 900°C for up to 24 hours. Microwave sintered sample were structurally stable in air 25°C and 900°C for up to 24 hours of testing.


Polymer ◽  
2019 ◽  
Vol 179 ◽  
pp. 121719 ◽  
Author(s):  
Fengmei Su ◽  
Xiaokang Yang ◽  
Beibei Dong ◽  
Jingyun Zhao ◽  
Fei Lv ◽  
...  

2019 ◽  
Vol 80 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Wen Cheng ◽  
Li Jiang ◽  
Xuejun Quan ◽  
Chen Cheng ◽  
Xiaoxue Huang ◽  
...  

Abstract The ozonation efficiency for removal of recalcitrant organic pollutants in alkaline wastewater is always low because of the presence of some hydroxyl radical scavengers. To solve this problem, the O3/Ca(OH)2 system was put forward, and p-nitrophenol (PNP) was chosen to explore the mechanism of this system. The effects of key operational parameters were studied respectively; the Ca(OH)2 dosage 3 g/L, ozone inlet flow rate 3.5 L/min, ozone concentration 65 mg/L, reactor pressure 0.25 MPa, and temperature 25 °C were obtained as the optimal operating conditions. After 60 min treatment, the organic matter mineralized completely, which was higher than the sum of the ozonation-alone process (55.63%) and the Ca(OH)2 process (3.53%). It suggests that the calcium hydroxide in the O3/Ca(OH)2 process possessed a paramount role in the removal of PNP. The liquid samples and the precipitated substances were analyzed by gas chromatography mass spectrometry, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy; it was demonstrated that Ca(OH)2 could accelerate the generation of hydroxyl radical and simultaneously in situ separate partial intermediate products and CO32− ions through some precipitation reactions.


2017 ◽  
Vol 102 (3) ◽  
pp. 666-673 ◽  
Author(s):  
Anna Pakhomova ◽  
Leyla Ismailova ◽  
Elena Bykova ◽  
Maxim Bykov ◽  
Tiziana Boffa Ballaran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document