scholarly journals Optimization and blends study of heterogeneous acid catalyst-assisted esterification of palm oil industry by-product for biodiesel production

2020 ◽  
Vol 7 (1) ◽  
pp. 191592
Author(s):  
Shehu-Ibrahim Akinfalabi ◽  
Umer Rashid ◽  
Imededdine Arbi Nehdi ◽  
Thomas Shean Yaw Choong ◽  
Hassen Mohamed Sbihi ◽  
...  

The optimum conditions to produce palm fatty acid distillate (PFAD)-derived-methyl esters via esterification have been demonstrated with the aid of the response surface methodology (RSM) with central composite rotatable design in the presence of heterogeneous acid catalyst. The effect of four reaction variables, reaction time (30–110 min), reaction temperature (30–70°C), catalyst concentration (1–3 wt.%) and methanol : PFAD molar ratio (3 : 1–11 : 1), were investigated. The reaction time had the most influence on the yield response, while the interaction between the reaction time and the catalyst concentration, with an F -value of 95.61, contributed the most to the esterification reaction. The model had an R 2 -value of 0.9855, suggesting a fit model, which gave a maximum yield of 95%. The fuel properties of produced PFAD methyl ester were appraised based on the acid value, iodine value, cloud and pour points, flash point, kinematic viscosity, density, ash and water contents and were compared with biodiesel EN 14214 and ASTM D-6751 standard limits. The PFAD methyl ester was further blended with petro-diesel from B0, B3, B5, B10, B20 and B100, on a volumetric basis. The blends were characterized by TGA, DTG and FTIR. With an acid value of 0.42 (mg KOH g −1 ), iodine value of 63 (g.I 2 /100 g), kinematic viscosity of 4.31 (mm 2 s −1 ), the PFAD methyl ester has shown good fuel potential, as all of its fuel properties were within the permissible international standards for biodiesel.

2013 ◽  
Vol 2 (4) ◽  
pp. 25-30
Author(s):  
Ahmad Rozi Tanjung ◽  
Ida Ayuningrum ◽  
Renita Manurung

Palm Fatty Acid Distillate (PFAD) can be used as raw material for synthesis polyester. The aim of this research is to synthesis of polyester and to determine the effect of reaction time on  polymerization methyl ester PFAD. The esterification stage was done at temperature 70oC, reactiontime 120 minute, reactant ratio 1:8 (PFAD:methanol), concentration of catalyst (H2SO4) 1% (w/w) PFAD;polymerization stage was done at temperature 126-132°C, concentration ofcatalyst (BF3-diethyl etherate) 9.2 % (w/w), variation of polymerization reaction time3, 4, and 5 hours; and polyesterification stage was done at temperature 175-200 oC,reactant ratios (w/w) 1:1 (polymerized ME : ethylene glycol), reaction time 4 hours and all ofstage was stirred at 150 rpm. The results showed, in the esterification stage wasobtained methyl ester with iodine value 77.29 g I2/100 g, viscosity 6.90 cP,density 859.91 kg/m3 and analysis byusing GC-MS showed that the purity of methyl ester was 82.23% andmolecular weight 267.97 g/mol. Decreasing in iodine value from 77.294 I2 g/100 g to 63.45-61.14 gI2/100 g indicated that the polymerization process had takenplace. In polyesterification stage wasobtained gel polyester, viscous, dark brown colored solid at room temperature with acid value from13.13 to 21.65 mg KOH/g, viscosity from 14.3 to 19.1 P, and molecular weight 995.03 to 1,522.07g/mol which is more suitable for application of modified polyester. Analysis by using GC showed that the purity of polyester is equal to 65.49%.


2020 ◽  
Vol 2 (1) ◽  
pp. 92-97
Author(s):  
Jamilu Usman ◽  
Bashar Abdullahi Hadi ◽  
Buhari Idris ◽  
Umar Musa Tanko ◽  
Bashar Usman ◽  
...  

Biodiesel is an alternative diesel fuel consisting of the alkyl monoesters of fatty acids from vegetable oils or animal fats. Biodiesel is a promising alternative fuel derived from animal fats or vegetable oil through transesterification with methanol. Base catalyzed transesterification is the most commonly used technique as it is the most economical process. Presently, a lot of heterogeneous catalysts have been formulated that are more effective than the homogeneous catalysts. CaO/Al2O3 was synthesized using incipient wetness impregnation method. The biodiesel was developed and optimized using Box-behnken response surface methodology (RSM) design provided using MINITAP-17 statistical software. The four independent variables considered are: reaction time, methanol to oil ratio, reaction temperature and catalyst concentration. The response chosen was fatty acid methyl ester (FAME) yields which were obtained from the reaction. The result from analysis of variance (ANOVA) showed a satisfactory result. Moreover, the input variables showed greater significance on the response which are reaction time and temperature base on F and P-value. The statistical models developed for predicting biodiesel yield revealed a significant agreement between the experimental and predicted values (R = 0.9686). An optimum methyl ester yield of 93.29 % was achieved with optimal conditions of methanol/oil molar ratio of 6:1, temperature of 600C, reaction time of 120 min and catalyst concentration of 1.0 wt%. The properties of the biodiesel produced also falls within the range prescribed by ASTM standard


2015 ◽  
Vol 26 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Chia-Wei Lin ◽  
Shuo-Wen Tsai

An environmentally friendly biorefinery process for producing biodiesel from chicken wastes was performed for this study. Low acid value (0.13±0.01 mg KOH/g) chicken oil was obtained by preparing chicken wastes with moderate heating and filtration processes that minimized damage to the lipids and thus facilitated subsequent reactions. Methanol-lipids in a molar ratio of 6:1 and a methanol-ethanol-lipids mixture in a molar ratio of 3:3:1 were both reacted with 1% KOH catalyst for transesterfication. Furthermore, ethanol-lipids in a molar ration of 6:1 were analogously transesterified with 1% sodium ethoxide. The amounts of biodiesel were 771.54 mg/mL±15.28, 722.98 mg/mL±37.38, and 714.86 mg/ mL±29.99 from methanol, eth-anol, and a mixture of methanol/ethanol (3:3), respectively, after transesterification. The total amount of ethyl ester was comparable with the total amount of methyl ester. In addition, ethanol is a renewable resource and a biorefinery concept can be contributed for biodiesel production. Further-more, transesterification of chicken oil with a mixture of methanol/ethanol (3:3) only needed a relatively short reaction time of an hour. Densities, viscosities, sulphur contents, acid values, and flash points of all esters were within the specifications of CNS 15072 and EN 14214. The transesterification system for chicken oil in ethanol and mixed methanol/ethanol (3:3) demonstrated in this study is a potential candidate for biodiesel production.


Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


Author(s):  
Hewei Yu ◽  
Yunlong Cao ◽  
Heyao Li ◽  
Gaiju Zhao ◽  
Xingyu Zhang ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Tanzer Eryilmaz

In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.


2014 ◽  
Vol 554 ◽  
pp. 500-504 ◽  
Author(s):  
Farid Nasir Ani ◽  
Ahmed Bakheit Elhameed

This paper investigated the three critical reaction parameters including catalyst concentration, microwave exit power and reaction time for the transesterification process of jatropha curcas oil using microwave irradiation. The work is an attempt to reduce the production cost of biodiesel. Similar quantities of methanol to oil molar ratio 6:1 and calcium oxide as a heterogeneous catalyst were used. The results showed that the best yield percentage 96% was obtained using 300W microwave exit power, 8 %wt CaO and 7 min. The methyl ester FAME obtained was within the standard of biodiesel fuel.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Muhammad Hossain ◽  
Md Siddik Bhuyan ◽  
Abul Md Ashraful Alam ◽  
Yong Seo

The aim of this research was to synthesize, characterize, and apply a heterogeneous acid catalyst to optimum biodiesel production from hydrolyzed waste cooking oil via an esterification reaction, to meet society’s future demands. The solid acid catalyst S–TiO2/SBA-15 was synthesized by a direct wet impregnation method. The prepared catalyst was evaluated using analytical techniques, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and the Brunauer–Emmett–Teller (BET) method. The statistical analysis of variance (ANOVA) was studied to validate the experimental results. The catalytic effect on biodiesel production was examined by varying the parameters as follows: temperatures of 160 to 220 °C, 20–35 min reaction time, methanol-to-oil mole ratio between 5:1 and 20:1, and catalyst loading of 0.5%–1.25%. The maximum biodiesel yield was 94.96 ± 0.12% obtained under the optimum reaction conditions of 200 °C, 30 min, and 1:15 oil to methanol molar ratio with 1.0% catalyst loading. The catalyst was reused successfully three times with 90% efficiency without regeneration. The fuel properties of the produced biodiesel were found to be within the limits set by the specifications of the biodiesel standard. This solid acid catalytic method can replace the conventional homogeneous catalyzed transesterification of waste cooking oil for biodiesel production.


2017 ◽  
Vol 2 (1) ◽  
pp. 1-10 ◽  
Author(s):  
O. S. Aliozo ◽  
L. N. Emembolu ◽  
O. D. Onukwuli

Abstract In this research work, melon oil was used as feedstock for methyl ester production. The research was aimed at optimizing the reaction conditions for methyl ester yield from the oil. Response surface methodology (RSM), based on a five level, four variable central composite designs (CCD)was used to optimize and statistically analyze the interaction effect of the process parameter during the biodiesel production processes. A total of 30 experiments were conducted to study the effect of methanol to oil molar ratio, catalyst weight, temperature and reaction time. The optimal yield of biodiesel from melon oil was found to be 94.9% under the following reaction conditions: catalyst weight - 0.8%, methanol to oil molar ratio - 6:1, temperature - 55°C and reaction time of 60mins. The quality of methyl ester produced at these conditions was within the American Society for Testing and Materials (ASTM D6751) specification.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Nichaonn Chumuang ◽  
Vittaya Punsuvon

The present study was performed to optimize a heterogeneous calcium methoxide (Ca(OCH3)2) catalyzed transesterification process assisted with tetrahydrofuran (THF) as a cosolvent for biodiesel production from waste cooking oil. Response surface methodology (RSM) with a 5-level-4-factor central composite design was applied to investigate the effect of experimental factors on the percentage of fatty acid methyl ester (FAME) conversion. A quadratic model with an analysis of variance obtained from the RSM is suggested for the prediction of FAME conversion and reveals that 99.43% of the observed variation is explained by the model. The optimum conditions obtained from the RSM were 2.83 wt% of catalyst concentration, 11.6 : 1 methanol-to-oil molar ratio, 100.14 min of reaction time, and 8.65% v/v of THF in methanol concentration. Under these conditions, the properties of the produced biodiesel satisfied the standard requirement. THF as cosolvent successfully decreased the catalyst concentration, methanol-to-oil molar ratio, and reaction time when compared with biodiesel production without cosolvent. The results are encouraging for the application of Ca(OCH3)2 assisted with THF as a cosolvent for environmentally friendly and sustainable biodiesel production.


Sign in / Sign up

Export Citation Format

Share Document