scholarly journals Large plasmonic absorption enhancement effect of triangular silver nanowires in silicon

2020 ◽  
Vol 7 (7) ◽  
pp. 191926
Author(s):  
Mohammed Shahriar Sabuktagin ◽  
Khairus Syifa Hamdan

Two-dimensional finite difference time domain (FDTD) simulations were performed for evaluating optical absorption enhancement and loss effects of triangular silver (Ag) nanowires embedded in silicon (Si) thin-film photovoltaic device structures. Near-bandgap absorption enhancement in Si was much larger than the reported values of other nanostructures from similar simulations. A nanowire with equal sides of 20 nm length showed 368-fold absorption enhancement whereas only 5× and 15× enhancement were reported for solid spherical and two-dimensional core-shell type nanostructures, respectively. Undesirable absorption loss in the metal of the nanowire was 3.55× larger than the absorption in Si which was comparable to the value reported for the spherical nanoparticle. Interestingly, as the height of the nanowire was increased to form a sharper tip, absorption loss showed a significant drop. For a nanowire with 20 nm base and 20 nm height, absorption loss was merely 1.91× larger than the absorption in Si at the 840 nm plasmon resonance. This drop could be attributed to weaker plasmon resonance manifested by lower metallic absorption in the spatial absorption map of the nanowire. However, absorption enhancement in Si was still large due to strong plasmonic fields at the sharper and longer tip, which was effective in enhancing absorption over a larger area in Si. Our work shows that the shape of a nanostructure and its optimization can significantly affect plasmonic absorption enhancement and loss performance in photovoltaic applications.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Liang Zhang ◽  
Jian’an He ◽  
Tao Li ◽  
Xiaocong Wu ◽  
Dayong Gu ◽  
...  

Variations of a Kretschmann-structure-based Ag-indium tin oxide- (ITO-) Au surface plasmon resonance (SPR) sensor were explored to improve its sensitivity. The sensor structure was optimised, and its characteristics were studied through numerical simulations. The chip structure that comprised 20 nm Ag/30 nm ITO/10 nm Au yielded the best sensing performance, wherein the angular sensitivity could reach 197.6° RIU−1 and the figure of merit was 43.4 RIU−1. These performance parameters are nearly three times higher than those of Ag/Au bimetallic resonance sensors. Furthermore, an adhesive Cr layer and two-dimensional graphene were incorporated into this sensor structure to explore their impact on the performance. The results demonstrated that the Cr layer significantly weakened the sensor performance, whereas graphene did not produce the expected enhancement effect on this structure. If simply adding a layer to a Au/Ag sensor can produce a three-fold improvement in its performance, then its economic and scientific benefits are potentially significant and widespread.


2008 ◽  
Vol 16 (14) ◽  
pp. 10294 ◽  
Author(s):  
H. Iu ◽  
J. Li ◽  
H. C. Ong ◽  
Jones T. K. Wan

Nano Letters ◽  
2014 ◽  
Vol 14 (6) ◽  
pp. 3033-3040 ◽  
Author(s):  
Xi Ling ◽  
Wenjing Fang ◽  
Yi-Hsien Lee ◽  
Paulo T. Araujo ◽  
Xu Zhang ◽  
...  

Author(s):  
Harshal Y. Shahare ◽  
Rohan Rajput ◽  
Puneet Tandon

Abstract Stamping is one of the most used manufacturing processes, where real-time monitoring is quite difficult due to high speed of the mechanical press, which leads to deterioration of the accuracy of the products In the present work, a method is developed to model elastic waves propagation in solids to measure contact conditions between die and workpiece during stamping. A two-dimensional model is developed that reduces the wave propagation equations to two-dimensional equations. To simulate the wave propagation inside the die-workpiece model, the finite difference time domain (FDTD) method and modified Yee algorithm has been employed. The numerical stability of the wave propagation model is achieved through courant stability condition, i.e., Courant-Friedrichs-Lewy (CFL) number. Two cases, i.e., flat die-workpiece interface and inclined die-workpiece interface, are investigated in the present work. The elastic wave propagation is simulated with a two-dimension (2D) model of the die and workpiece using reflecting boundary conditions for different material properties. The experimental and simulation-based results of reflected and transmitted wave characteristics are compared for different materials in terms of reflected and transmitted wave height ratio and material properties such as acoustic impedance. It is found that the numerical simulation results are in good agreement with the experimental results.


2011 ◽  
Vol 216 ◽  
pp. 148-152 ◽  
Author(s):  
Yan Li ◽  
Hai Wei Fu ◽  
Xiao Li Li ◽  
Min Shao

The resonant wavelength of the two-dimensional photonic crystal force sensor model changing with normal stress along y direction is calculated by finite-difference time-domain method. The result shows that the variation of the size and shape of the resonant cavity has a main contribution to the variation of the resonant wavelength. The elasto-optical effect of GaAs medium can not obviously change the wavelength of the resonant cavity below score of megapascal.


2018 ◽  
Author(s):  
Yong Cao ◽  
Mark T. McDermott

ABSTRACTUltrasensitive and selective detection and quantification of dopamine (DA) plays a key role in monitoring neurodegenerative diseases. However, the detection limit reported for DA detection is typically in the lower nM range. Pushing the detection limit to pM or lower for this particular target to cover the physiological levels (< 130 pM) is significant. Herein, DA DNA aptamer (DAAPT) gold nanoparticle (AuNP) conjugate is utilized to enhance the surface plasmon resonance (SPR) signal, which enables to detect and quantify DA in the femtomolar (200 fM) to picomolar range. To the best of our knowledge, this is the lowest detection limit achieved for SPR sensing of dopamine. The as-prepared 10 nm DAAPT-AuNP conjugate demonstrates strong binding affinity (Kd = 3.1 ± 1.4 nM) to the complementary DNA (cDNA) probe on gold chip. The cDNA probe is immobilized to the chip via polydopamine surface chemistry, which allows the Michael addition of any primary amine-terminated biomolecules. By adjusting the concentration of the DAAPT-AuNP conjugate, two calibration curves are generated with dynamic ranges from 100 µM to 2 mM, and from 200 fM to 20 nM, respectively. Both calibration curves have negative slopes, showing good agreement to a dose-response curve in an enzyme inhibition assay. In addition, the sensing strategy is evaluated to be specific for DA detection using a series of DA analogs and other metabolites as potential interferences.


Sign in / Sign up

Export Citation Format

Share Document