scholarly journals Alternate current measurement

The lack of precision of measurements with alternate currents, as compared with those using direct currents, is mainly due to the relative sensitiveness of the instruments available for such tests. The fact that the turning moment acting on the moving system depends in one case on the square of the current and in the other on the first power of the current, readily explains the high ratio between the currents needed to cause the minimum measurable deflection in the two cases, but this ratio is, nevertheless, most striking when a numerical comparison is actually made on some fair basis. The only likely way at present of improving alternate current instruments is to use iron cored electromagnets to increase the strength of the magnetic field. I have found that the difficulties due to varying permeability and hysteresis of the iron can be avoided by exciting the electromagnet in shunt. It proves possible, with careful design, to construct an electromagnet whose flux is connected with the exciting voltage by a strict mathematical law involving no variable physical properties like permeability, etc. Such an electromagnet is eminently suited for measuring purposes. The theoretical and experimental study of instruments constructed on this principle has brought out certain novel points which are set forth in the present paper. The first part discusses the mathematical relations of cyclic quantities having a common fundamental period, and constitutes a development of a method already published. This method is the only one known to me which is independent of assumptions in regard to the wave form of the quantities dealt with. The usual methods, which are based on the erroneous assumptions of sine law wave form, are not any simpler in working, and are most unsatisfactory when the accuracy of new results has to be critically examined. All alternate current measurements refer to mean squares or to mean products, and the natural method of obtaining the connections between such squares and products is to study the properties of quadratic functions of the variables. The earliest instance of this in alternate current theory was in connection with the “three voltmeter method.” Such processes lead to a very simple form of calculus appropriate to cyclic quantities.

1959 ◽  
Vol 37 (5) ◽  
pp. 614-618 ◽  
Author(s):  
K. L. Chopra ◽  
T. S. Hutchison

The phase propagation in superconducting aluminum has been studied by measuring the time rate of change of ultrasonic attenuation. The time taken for the destruction of the superconducting phase in a cylindrical specimen, by means of a magnetic field, H, greater than the critical field, Hc, is approximately proportional to{H/(H–Hc)} in agreement with eddy-current theory. In the converse case, where the superconducting phase is restored by switching off the magnetic field H (>Hc), the total time taken is nearly independent of the temperature (or Hc) as well as H. The superconducting phase grows at a non-uniform volume rate which is considerably less than the uniform rate of collapse.


2012 ◽  
Vol 271-272 ◽  
pp. 1636-1640
Author(s):  
Xiao Yan Tang ◽  
Zhong Yun ◽  
Chuang Xiang

The calculation model of the single turn rectangle current carrying coil was established. The theoretic formula for calculating the magnetic field intensity of any point in space was derived. For a pair of radial magnetizing permanent magnets, the formula for calculating the magnetic force of permanent magnet in the magnetic field was deduced based on the equivalent current theory of permanent magnet. According to the formula, the influencing factors and the changing rules for the magnetic force of permanent magnet can be seen directly: the current, the coil turns are proportional to its magnetic force, while the coupling distance is inversely proportional to its magnetic force.


Nature ◽  
1910 ◽  
Vol 84 (2123) ◽  
pp. 6-7
Author(s):  
GISBERT KAPP

1967 ◽  
Vol 31 ◽  
pp. 375-380
Author(s):  
H. C. van de Hulst

Various methods of observing the galactic magnetic field are reviewed, and their results summarized. There is fair agreement about the direction of the magnetic field in the solar neighbourhood:l= 50° to 80°; the strength of the field in the disk is of the order of 10-5gauss.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


Author(s):  
D. E. Speliotis

The interaction of electron beams with a large variety of materials for information storage has been the subject of numerous proposals and studies in the recent literature. The materials range from photographic to thermoplastic and magnetic, and the interactions with the electron beam for writing and reading the information utilize the energy, or the current, or even the magnetic field associated with the electron beam.


Sign in / Sign up

Export Citation Format

Share Document