scholarly journals The photolysis of ammonia

It has been shown in the preceding paper that the hypothesis that hydrazine is responsible for the anomalously low hydrogen atom concentration in the decomposition of ammonia must be abandoned. In order to explain this important discrepancy some new experimental techniques require to be developed which will settle the matter without appeal to further hypotheses. There are two general explanations of the discrepancy: (1) the hydrogen atoms are not produced as fast as that calculated on the assumption that every ammonia molecule absorbing a quantum necessarily decomposes, (2) that some entity not yet recognized removes hydrogen atoms at a rate faster than that at which they normally recombine. In this paper methods will be described in which these two problems are solved, and finally there is a discussion of the photochemistry of ammonia in the light of the new results obtained during these experiments.

1978 ◽  
Vol 56 (3) ◽  
pp. 392-401 ◽  
Author(s):  
Jacques Lede ◽  
Jacques Villermaux

The rate constant for the reaction of hydrogen atoms, generated by electrical discharge, with ethane and propane has been studied in tubular and perfectly stirred open reactors. Measurements are made with a new and very sensitive method of analysis of the hydrogen atom concentration. The results obtained near room temperature are in good agreement with those of other authors operating at much higher temperatures. The following estimates may be made:[Formula: see text]


In this paper, a system is described in which diffusion of a hydrogen atom takes place effectively in one dimension. The exact differential diffusion equations can be set up and solved, taking into account the possibility of gas-phase removal of the hydrogen atom by a reaction such as H + C 2 H 4 = C 2 H 5 . The collision efficiency of such a reaction has been related to the fraction of hydrogen atoms which reach the oxide layer under certain well-defined conditions. The calculated distribution curves of hydrogen atom concentration throughout the reaction vessel are also given under various conditions.


The reason for studying the reaction of hydrogen atoms with hydrazine is that a controversy has arisen in attempting to elucidate the mechanism of the photochemical decomposition of ammonia. It has been generally agreed that the ammonia molecule is decomposed to a hydrogen atom and an amine radical when it absorbs light around 2000° A. Presuming that the atomic hydrogen combines on the walls or in the gas phase it is possible to calculate what its stationary concentration ought to be under any given set of conditions. If, however, the stationary concentration is actually measured by using para-hydrogen as a detector, as was done by Farkas and Harteck (1934), it is found that the measured value is lower than the value calculated from the above assumptions. A number of suggestions, discussed in detail in the following paper, were made to explain this discrepancy, and among the most reasonable was that of Mund and van Tiggelen (1937) who suggested that the hydrazine known to be formed in the system removed such atoms more rapidly than would occur in the ordinary course of events. The result of their suggestion was the invention of elaborate schemes to explain the mechanism of the ammonia photolysis. As a further essential step in the ammonia problem it therefore seemed necessary to measure the efficiency of the reaction between hydrogen atoms and hydrazine. At the same time further information was also desirable about the photochemistry of hydrazine itself. This paper will therefore be concerned with this aspect of the subject. The results will then be discussed in the following paper together with a number of new experiments on ammonia in order that the mechanism of the ammonia reaction may be more fully established.


2019 ◽  
Vol 484 (1) ◽  
pp. 56-60
Author(s):  
D. A. Indejtsev ◽  
E. V. Osipova

Hydrogen atom behavior in pure aluminum is described by ab initio modelling. All main energy characteristics of the system consisting of hydrogen atoms in a periodic aluminum crystal are found.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 322
Author(s):  
Zhengxiong Su ◽  
Sheng Wang ◽  
Chenyang Lu ◽  
Qing Peng

Hydrogen plays a significant role in the microstructure evolution and macroscopic deformation of materials, causing swelling and surface blistering to reduce service life. In the present work, the atomistic mechanisms of hydrogen bubble nucleation in vanadium were studied by first-principles calculations. The interstitial hydrogen atoms cannot form significant bound states with other hydrogen atoms in bulk vanadium, which explains the absence of hydrogen self-clustering from the experiments. To find the possible origin of hydrogen bubble in vanadium, we explored the minimum sizes of a vacancy cluster in vanadium for the formation of hydrogen molecule. We show that a freestanding hydrogen molecule can form and remain relatively stable in the center of a 54-hydrogen atom saturated 27-vacancy cluster.


1966 ◽  
Vol 44 (2) ◽  
pp. 191-197
Author(s):  
R. C. Rumfeldt ◽  
D. A. Armstrong

Yields of hydrogen formed in the 60Co γ-radiolyses of pure polycrystalline samples of HBr and HCl at 77 °K decrease with increasing dose in the range 0 to 1 × 1018 eV per g. The true initial yields are G(H2)solidHClat77°K = 6.3 ± 0.2 and G(H2)solidHBrat77°K = 12.3 ± 0.3. Within experimental error these are the same as the respective liquid-phase yields at −79 °C. For doses in excess of 2 × 1018 eV per g the dose dependence is no longer significant and the yields tend toward plateau values of 3.2 ± 0.1 and 10.3 ± 0.1 for HCl and HBr respectively. The dose dependence of the hydrogen yields is attributed to the scavenging of a reactive intermediate by the halogen atoms and molecules which accumulate in the solid matrix as the dose increases.In independent experiments with an apparatus of the Klein–Scheer type it was shown that hydrogen atoms react readily with films of HBr at 77 °K. There is, however, no evidence of a significant reaction with HCl at this temperature. The difference in behavior of the two hydrogen halides may be explained by their different activation energies for reaction with hydrogen atoms. The results of the γ-radiolyses are discussed in the light of these experiments and it is suggested that the dose dependence may be a result of the scavenging of an ionic intermediate rather than a thermal hydrogen atom.


1956 ◽  
Vol 34 (8) ◽  
pp. 1061-1073 ◽  
Author(s):  
S. Toby ◽  
H. I. Schiff

Deuterium was dissociated on a hot tungsten filament and the atom concentration measured by isothermal calorimetry. The recombination coefficient of deuterium atoms on a glass surface, coated with metaphosphoric acid, was found to be 3.8 × 10−5, and similar to that found for hydrogen atoms. The reactions of H-atoms and D-atoms with ethylene were found to be very rapid. The effects on the yields of the products and on their isotopic composition of variations of reactant flow rate, atom concentration, pressure, and atom-detector position were studied. The major products were methanes, ethanes, and ethylenes, with minor amounts of propanes and butanes. The methanes were always highly deuterated while the ethanes were slightly deuterated. A mechanism is proposed to explain the observations based on a flow pattern in the reaction zone. The possibility of differences in the reaction rates of variously deuterated intermediates is also discussed.


1973 ◽  
Vol 51 (17) ◽  
pp. 2853-2859 ◽  
Author(s):  
Guy J. Collin

The vacuum u.v. photolysis of 1 -butene was studied in the 147–105 nm region. The main products formed from the fragmentation of excited molecules are allene, 1,3-and 1,2-butadienes, ethylene, and acetylene. The addition of a hydrogen atom to the double bond produces mainly secondary butyl radicals (91%) at 147 nm. At 123.6 nm, this proportion becomes 82%. Thus at shorter wavelengths (10 and 11.6–11.8 eV), hydrogen atoms are produced with a kinetic energy higher than the thermal energy.


5-Aminolaevulinate synthetase catalyses the condensation of glycine and succinyl-CoA to give 5-aminolaevulinic acid. At least two broad pathways may be considered for the initial C—C bond forming step in the reaction. In pathway A the Schiff base of glycine and enzyme bound pyridoxal phosphate ( a ) undergoes decarboxylation to give the carbanion ( b ) which then condenses with succinyl-CoA with the retention of both the original C2 hydrogen atoms of glycine. In pathway B, loss of a C2 hydrogen atom gives another type of carbanion ( c ) that reacts with succinyl-CoA. Evidence has been presented to show that the initial C—C bond forming event occurs via pathway B which involves the removal of the pro R hydrogen atom of glycine. Subsequent mechanistic and stereochemical events occurring at the carbon atom destined to become C5 of 5-aminolaevulinate have also been delineated.


Sign in / Sign up

Export Citation Format

Share Document