Heat transfer at low temperatures between tube walls and gases in turbulent flow

An apparatus was designed on the counter-flow system to study heat transfer between tube walls and gases at low temperatures in a region in which careful measurements had not previously been made. Oxygen, nitrogen and carbon dioxide were used, covering a temperature range from + 45° to –167° C, pressures up to 11 atm., and Reynolds numbers from 3000 to 60,000. Results were correlated by the use of dimensionless groups and a general equation ob­tained, independent of the nature of the gas and applicable over the whole range of experi­ments. With Reynolds numbers evaluated at mean film temperatures, the coefficient in the equation was found to be 5% lower than that obtained from measurements made at normal and high temperatures. This is regarded as justifying the extension of the ordinary equation to low-temperature regions. Determinations on friction accompanying heat transfer with gases in turbulent flow at low temperatures showed that the effect of heat transfer on the friction factor was small. Nomenclature C constant in Sutherland equation. D diameter of tube; equivalent diameter of annulus, i. e. internal diameter of outer tube minus external diameter of inner tube. F frictional force per lb. of fluid. L length of tube. T absolute temperature, ° K. V linear velocity of gas, as calculated from mass flow per unit time per unit of cross sectional area, divided by the mean density of the fluid. c specific heat of fluid at constant pressure. f friction factor, or coefficient of proportionality in pressure drop equation. g acceleration due to gravity. h coefficient of heat transfer between fluid and surface. k thermal conductivity of fluid. r, s constants (used as exponents). α, β constants. ϕ(x) function of x . μ absolute viscosity of fluid. ρ absolute density of fluid. Δp pressure drop in pipe. Subscripts a refers to annulus. i refers to inner tube. f refers to properties evaluated at film temperatures. Film temperature is taken as the arithmetic mean of the bulk fluid temperature and the tube-wall temperature.

2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Henrique Stel ◽  
Rigoberto E. M. Morales ◽  
Admilson T. Franco ◽  
Silvio L. M. Junqueira ◽  
Raul H. Erthal ◽  
...  

This article describes a numerical and experimental investigation of turbulent flow in pipes with periodic “d-type” corrugations. Four geometric configurations of d-type corrugated surfaces with different groove heights and lengths are evaluated, and calculations for Reynolds numbers ranging from 5000 to 100,000 are performed. The numerical analysis is carried out using computational fluid dynamics, and two turbulence models are considered: the two-equation, low-Reynolds-number Chen–Kim k-ε turbulence model, for which several flow properties such as friction factor, Reynolds stress, and turbulence kinetic energy are computed, and the algebraic LVEL model, used only to compute the friction factors and a velocity magnitude profile for comparison. An experimental loop is designed to perform pressure-drop measurements of turbulent water flow in corrugated pipes for the different geometric configurations. Pressure-drop values are correlated with the friction factor to validate the numerical results. These show that, in general, the magnitudes of all the flow quantities analyzed increase near the corrugated wall and that this increase tends to be more significant for higher Reynolds numbers as well as for larger grooves. According to previous studies, these results may be related to enhanced momentum transfer between the groove and core flow as the Reynolds number and groove length increase. Numerical friction factors for both the Chen–Kim k-ε and LVEL turbulence models show good agreement with the experimental measurements.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Peter Ireland ◽  
Étienne Robert

Abstract Turbulators are a promising avenue to enhance heat transfer in a wide variety of applications. An experimental and numerical investigation of heat transfer and pressure drop of a broken V (chevron) turbulator is presented at Reynolds numbers ranging from approximately 300,000 to 900,000 in a rectangular channel with an aspect ratio (width/height) of 1.29. The rib height is 3% of the channel hydraulic diameter while the rib spacing to rib height ratio is fixed at 10. Heat transfer measurements are performed on the flat surface between ribs using transient liquid crystal thermography. The experimental results reveal a significant increase of the heat transfer and friction factor of the ribbed surface compared to a smooth channel. Both parameters increase with Reynolds number, with a heat transfer enhancement ratio of up to 2.15 (relative to a smooth channel) and a friction factor ratio of up to 6.32 over the investigated Reynolds number range. Complementary CFD RANS (Reynolds-Averaged Navier-Stokes) simulations are performed with the κ-ω SST turbulence model in ANSYS Fluent® 17.1, and the numerical estimates are compared against the experimental data. The results reveal that the discrepancy between the experimentally measured area averaged Nusselt number and the numerical estimates increases from approximately 3% to 13% with increasing Reynolds number from 339,000 to 917,000. The numerical estimates indicate turbulators enhance heat transfer by interrupting the boundary layer as well as increasing near surface turbulent kinetic energy and mixing.


Author(s):  
Sogol Pirbastami ◽  
Samir Moujaes

A Computational Fluid Dynamics (CFD) study of heat enhancement in helically grooved tubes was carried out by using a 3-dimensional simulation with the STARCCM+ simulation package software. The k-ε model selected for turbulent flow simulation and the governing equations were solved by using the finite volume method. Geometric models of the current study include 3 rectangular grooved tubes with different groove width (w) and depth (e) which varies from 0.2 mm to 0.6 mm for the same tube length of 2.0m and diameter of 7.1 mm. The simulations were performed in the Reynolds number (Re) range of 4000–10000 with a uniform wall heat flux of 3150 w/m2 applied as a boundary condition on the surface of each tube. The purpose of this research is to investigate the effect of different groove dimensions on the thermal performance and pressure drop of water inside the grooved tubes and clarify the structural nature of the flow in regards to flow swirl and turbulent kinetic energy distributions. It was found that the highest performance belongs to the groove with these dimensions (w = 0.2 mm and e = 0.2 mm) which was considered for further study. Then, for these same groove dimensions four pitch size to tube diameter (p/D) ratios ranging from 1 to 18 were simulated for the same 2.0 m length tube. The results for Nusselt number (Nu) and friction factor (f) showed that by increasing the (p/D) ratio both the Nu numbers and the friction factors (f) values decrease. With a smaller pitch length (p) the turbulence intensity generated by the internal groove was also found to increase. The physical behavior of the turbulent flow and heat transfer characteristics were observed by contour plots which showed an increasing swirl flow and turbulent kinetic energy as p/D decreases. With an increase of the Nu number for smaller p/D ratio, a penalty of a higher pressure drop was obtained. The results were validated with a previous experimental work and the average error between the experimental and CFD Nu numbers and f were 13% and 8% respectively. A higher level of turbulent kinetic energy is observed near the grooves, as compared to the smooth areas of the pipe surface away from the grooves, which are expected to lead to higher levels of heat transfer. The effect of pitch length (p) on the flow pattern were plotted by streamlines along the tubes, by decreasing the pitch size (p/D ratio) an increase in the swirl is noticed as evidenced by the plots of the path lines. Finally, empirical correlations for Nusselt number and friction factor were provided as a function of p/D and Re number. This study indicates that the incorporation of the internal groove, of particular dimensions, can lead to an improvement of performance in heat exchanger devices. A limited variation of the groove dimensions was conducted and it was found that the values of Nu and f do not improve with an increase of (w) nor with that of (e) from 0.2–0.6 mm.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Wei Du ◽  
Lei Luo ◽  
Songtao Wang ◽  
Jian Liu ◽  
Bengt Sunden

Abstract Heat transfer characteristics in a latticework duct with various sidewalls are numerically investigated. The crossing angle is 90 deg and the number of subchannels is eleven on both the pressure side and suction side for each latticework duct. The thickness of the ribs is 8 mm and the distance between adjacent ribs is 24 mm. The investigation is conducted for various Reynolds numbers (11,000 to 55,000) and six different sidewalls. Flow structure, pressure drop, and heat transfer characteristics are analyzed. Results revealed that the sidewall has significant effects on heat transfer and flow structure. The triangle-shaped sidewall provides the highest Nusselt number accompanied by the highest friction factor. The sidewall with a slot shows the lowest friction factor and Nusselt number. An increased slot width decreased the Nusselt number and friction factor simultaneously.


2014 ◽  
Vol 592-594 ◽  
pp. 1590-1595 ◽  
Author(s):  
Naga Sarada Somanchi ◽  
Sri Rama R. Devi ◽  
Ravi Gugulothu

The present work deals with the results of the experimental investigations carried out on augmentation of turbulent flow heat transfer in a horizontal circular tube by means of tube inserts, with air as working fluid. Experiments were carried out initially for the plain tube (without tube inserts). The Nusselt number and friction factor obtained experimentally were validated against those obtained from theoretical correlations. Secondly experimental investigations using three kinds of tube inserts namely Rectangular bar with diverging conical strips, Rectangular bar with converging conical strips, Rectangular bar with alternate converging diverging conical strips were carried out to estimate the enhancement of heat transfer rate for air in the presence of inserts. The Reynolds number ranged from 8000 to 19000. In the presence of inserts, Nusselt number and pressure drop increased, overall enhancement ratio is calculated to determine the optimum geometry of the tube insert. Based on experimental investigations, it is observed that, the enhancement of heat transfer using Rectangular bar with converging and diverging conical strips is more effective compared to other inserts. Key words: Heat transfer, enhancement, turbulent flow, conical strip inserts, friction factor, pressure drop.


1992 ◽  
Vol 114 (2) ◽  
pp. 373-382 ◽  
Author(s):  
D. A. Olson

We have measured heat transfer and pressure drop of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/cm2. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Krishnendu Saha ◽  
Sumanta Acharya

This paper presents a comparative numerical study of turbulent flow inside a two-pass internal cooling channel with different bend geometries. The goal is to find a geometry that reduces the bend related pressure loss and enhances overall heat transfer coefficient. A square channel with a round U-bend is taken as a baseline case and the heat transfer and pressure drop for nine different bend geometries are compared with the baseline. Modifications for the bend geometry are made along the channel divider wall and at the end wall of the 180 deg bend. The bend geometries studied include: (1) a turning vane geometry, (2) an asymmetrical bulb, (3) three different symmetrical bulbs, (4) two different bow shaped geometries at the end wall, (5) a bend with an array of dimples in the bend region, and (6) finally a combination of bow geometry and dimples. The solution procedure is based on a commercial finite volume solver using the Reynolds averaged Navier–Stokes (RANS) equation and a turbulence model. A two equation realizable k-ɛ model with enhanced wall treatment is used to model the turbulent flow. It was found that the bend geometry can have a significant effect on the overall performance of a two-pass channel. The modified bend geometries are compared with the baseline using Nusselt number ratios, friction factor ratios, and thermal performance factors (TPF) as the metrics. All the modified bend geometries show increase in the TPF with the symmetrical bulb configuration showing nearly a 40% reduction in friction factor ratio and a 30% increase in thermal performance. The highest TPF (41% increase over baseline) is observed for the symmetrical bulb combined with a bow along the outer walls and surface dimples.


2014 ◽  
Vol 18 (4) ◽  
pp. 1145-1158 ◽  
Author(s):  
Kamil Arslan

In this study, steady-state turbulent forced flow and heat transfer in a horizontal smooth semi-circular cross-sectioned duct was numerically investigated. The study was carried out in the turbulent flow condition where Reynolds numbers range from 1?104 to 5.5?104. Flow is hydrodynamically and thermally developing (simultaneously developing flow) under uniform surface heat flux with uniform peripheral wall heat flux (H2) boundary condition on the duct?s wall. A commercial CFD program, Ansys Fluent 12.1, with different turbulent models was used to carry out the numerical study. Different suitable turbulence models for fully turbulent flow (k-? Standard, k-? Realizable, k-? RNG, k-? Standard and k-? SST) were used in this study. The results have shown that as the Reynolds number increases Nusselt number increases but Darcy friction factor decreases. Based on the present numerical solutions, new engineering correlations were presented for the average Nusselt number and average Darcy friction factor. The numerical results for different turbulence models were compared with each other and similar experimental investigations carried out in the literature. It is obtained that, k-? Standard, k-? Realizable and k-? RNG turbulence models are the most suitable turbulence models for this investigation. Isovel contours of velocity magnitude and temperature distribution for different Reynolds numbers, turbulence models and axial stations in the duct were presented graphically. Also, local heat transfer coefficient and local Darcy friction factor as function of dimensionless position along the duct were obtained in this investigation.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Nasir Koosha

In this study, two rows of fins from a fin-tube plate recuperator heat exchanger with two different materials, ceramic and steel, have been simulated by cfx software. First, by using experimental data that are in access, the independency from network and the confirmation of pattern authenticity have been checked. Equations from the equations of steady-state (SST) model k–ω have been used for applying turbulence terms in dominant. After network stabilization in greatest Reynolds number, the flow in the recuperator heat exchanger has been studied for two other Reynolds numbers. From the simulations, it is concluded that by increasing Reynolds number the temperature of fins' surfaces, outlet fluid temperature, and the temperature of tubes' surfaces will be increased, but totally the amount of overall heat transfer in time unit will be increased by the increase in Reynolds number. Also, it is observed that changing the material from steel to ceramic does not have that much difference for heat transfer in flow in low temperatures but the temperature of fins' surfaces for different materials and similar boundary status is different.


Author(s):  
Levi A. Campbell ◽  
Satish Kandlikar

In studying the fluid flow and heat transfer in microchannels and minichannels, various claims have been made regarding transition at Reynolds numbers significantly below 2300. As a first step in identifying the reasons for such reports on early transition, the effect of entrance geometry on the pressure drop and transition to turbulence was studied in a conventional channel of 19 mm inside diameter (Kandlikar and Campbell [1]). As a second step, the effect of entrance condition on pressure drop and transition to turbulence is studied in small channels with diameters of 1.067 mm and 0.457 mm. The two entrance conditions employed for both channels are re-entrant and smooth. The experimental results show the effect of entrance condition on local friction factor, transition Reynolds number, and Hagenbach’s factor.


Sign in / Sign up

Export Citation Format

Share Document