Dielectric dispersion in pure polar liquids at very high radio frequencies - III.The effect of electrolytes in solution

A description is given of measurements at millimetre and centimetre wave-lengths of absorption in electrolytic solutions, up to concentrations of about 3 normal, with water and methyl alcohol as solvents. The observations are analyzed in terms of Debye’s basic theory of dispersion in a polar dielectric, and it is shown what modifications to the theory are necessary to take account of the ionic conductivity produced by an electrolyte. Measure­ments on aqueous solutions of sodium chloride are discussed in relation to Hückel’s theory of electrolytic solutions.

The results of the measurements at centimetre and millimetre wave-lengths on the dielectric properties of water, methyl alcohol and ethyl alcohol described in part I are analyzed. There is no evidence that, for any of these liquids, more than a single relaxation time as a function of temperature is required to account for the dispersion arising from dipole rotation. It is suggested that the observed behaviour of the two alcohols at wave-lengths near to 1 cm, which appears not to conform with the hypothesis of a single relaxation time, is in fact the consequence of resonance absorption. If it is supposed that in dipole rotation and viscous flow the molecules have to surmount potential energy barriers, then it appears that, in each of the liquids examined, the heights of the barriers concerned in the two processes are identical; but the ‘frequency factor’ associated with such processes is much larger for viscous flow than for dipole rotation.


The results are given of some measurements of the absorption coefficient and refractive index of water, methyl and ethyl alcohols at wave-lengths of 6·2 mm, 1·24 cm and 3·21 cm over the temperature range —10 to 50°C, including some observations on water in the supercooled state. The method used is based upon the fact that the rate of attenuation of radio-frequency energy along a wave-guide filled with the liquid is dependent upon both the absorption coefficient and the refractive index when the guide is operated near to the cut-off condition. The electrical characteristics of water vary in a continuous manner through the normal freezing-point of 0°C down to at least —8°C. The measurements indicate that both alcohols, like water, have relatively high atomic polarizations.


2019 ◽  
Author(s):  
Till Fuchs ◽  
Sean Culver ◽  
Paul Till ◽  
Wolfgang Zeier

<p>The sodium-ion conducting family of Na<sub>3</sub><i>Pn</i>S<sub>4</sub>, with <i>Pn</i> = P, Sb, have gained interest for the use in solid-state batteries due to their high ionic conductivity. However, significant improvements to the conductivity have been hampered by the lack of aliovalent dopants that can introduce vacancies into the structure. Inspired by the need for vacancy introduction into Na<sub>3</sub><i>Pn</i>S<sub>4</sub>, the solid solutions with WS<sub>4</sub><sup>2-</sup> introduction are explored. The influence of the substitution with WS<sub>4</sub><sup>2-</sup> for PS<sub>4</sub><sup>3-</sup> and SbS<sub>4</sub><sup>3-</sup>, respectively, is monitored using a combination of X-ray diffraction, Raman and impedance spectroscopy. With increasing vacancy concentration improvements resulting in a very high ionic conductivity of 13 ± 3 mS·cm<sup>-1</sup> for Na<sub>2.9</sub>P<sub>0.9</sub>W<sub>0.1</sub>S<sub>4</sub> and 41 ± 8 mS·cm<sup>-1</sup> for Na<sub>2.9</sub>Sb<sub>0.9</sub>W<sub>0.1</sub>S<sub>4</sub> can be observed. This work acts as a stepping-stone towards further engineering of ionic conductors using vacancy-injection via aliovalent substituents.</p>


2019 ◽  
Author(s):  
Till Fuchs ◽  
Sean Culver ◽  
Paul Till ◽  
Wolfgang Zeier

<p>The sodium-ion conducting family of Na<sub>3</sub><i>Pn</i>S<sub>4</sub>, with <i>Pn</i> = P, Sb, have gained interest for the use in solid-state batteries due to their high ionic conductivity. However, significant improvements to the conductivity have been hampered by the lack of aliovalent dopants that can introduce vacancies into the structure. Inspired by the need for vacancy introduction into Na<sub>3</sub><i>Pn</i>S<sub>4</sub>, the solid solutions with WS<sub>4</sub><sup>2-</sup> introduction are explored. The influence of the substitution with WS<sub>4</sub><sup>2-</sup> for PS<sub>4</sub><sup>3-</sup> and SbS<sub>4</sub><sup>3-</sup>, respectively, is monitored using a combination of X-ray diffraction, Raman and impedance spectroscopy. With increasing vacancy concentration improvements resulting in a very high ionic conductivity of 13 ± 3 mS·cm<sup>-1</sup> for Na<sub>2.9</sub>P<sub>0.9</sub>W<sub>0.1</sub>S<sub>4</sub> and 41 ± 8 mS·cm<sup>-1</sup> for Na<sub>2.9</sub>Sb<sub>0.9</sub>W<sub>0.1</sub>S<sub>4</sub> can be observed. This work acts as a stepping-stone towards further engineering of ionic conductors using vacancy-injection via aliovalent substituents.</p>


1984 ◽  
Vol 49 (5) ◽  
pp. 1061-1078 ◽  
Author(s):  
Jiří Čeleda ◽  
Stanislav Škramovský

Based on the earlier paper introducing a concept of the apparent parachor of a solute in the solution, we have eliminated in the present work algebraically the effect which is introduced into this quantity by the additivity of the apparent molal volumes. The difference remaining from the apparent parachor after substracting the contribution corresponding to the apparent volume ( for which the present authors suggest the name metachor) was evaluated from the experimental values of the surface tension of aqueous solutions for a set of 1,1-, 1,2- and 2,1-valent electrolytes. This difference showed to be independent of concentration up to the very high values of the order of units mol dm-3 but it was directly proportional to the number of the free charges (with a proportionality factor 5 ± 1 cm3 mol-1 identical for all studied electrolytes). The metachor can be, for this reason, a suitable characteristic for detection of the association of ions and formation of complexes in the solutions of electrolytes, up to high concentrations where other methods are failing.


Author(s):  
J. W. Winslow ◽  
R. J. Good ◽  
P. E. Berghausen

1931 ◽  
Vol 6 (1) ◽  
pp. 1-11 ◽  
Author(s):  
J. F. LOGAN

As a contribution to the chemistry of muscle tissue, the solubility of the protein of haddock muscle in aqueous solutions of sodium chloride and neutral potassium phosphate, respectively, was determined. The results are expressed in tabular form and graphically in the form of solubility curves. A water-soluble protein and also a salt-soluble protein were isolated from dialyzed haddock muscle by extraction methods. These proteins were obtained in a comparatively pure condition by precipitation from solution in the region of their isoelectric points.


2006 ◽  
Vol 240 (2) ◽  
pp. 186-196 ◽  
Author(s):  
Andreas Hüther ◽  
Xiaoping Xu ◽  
Gerd Maurer

Sign in / Sign up

Export Citation Format

Share Document