Seismic observation in the eastern Atlantic, 1952

The seismic refraction shooting experiments undertaken in the eastern Atlantic and on the neighbouring continental shelf are briefly described, and the results compared with previous work. The deep-sea results show that basaltic rocks lie immediately below the sedimentary layer, which is variable in thickness, with a mean of about 1 km. The basaltic rocks extend to the Mohorovičic discontinuity at a depth of between 9 and 13 km below sea-level. The results from the stations on the continental shelf at the mouth of the English Channel confirm that the basement rocks slope gently seaward; the value of this slope and the nature of the sedimentary cover vary with position.

For the experiments described in this paper a new method of seismic refraction shooting was developed. With this method hydrophones suspended at a depth of about 100 ft. below the surface of the sea acted as receivers for the compressional waves developed by depth charges exploding at a depth of approximately 900 ft. The hydrophones were connected with sono-radio buoys which radio-transmitted the electrical signals to a recording system in the ship from which the charges were dropped. Four buoys were in use simultaneously, distributed at differing ranges from the ship. The experiments were carried out at three positions in an area of the eastern Atlantic around the point 53° 50' N, 18° 40' W, where the water depth is approximately 1300 fm. (2400 m). The results showed that the uncrystalline sedimentary layer in this area varied in thickness from 6200 ft. to 9700 ft. (1900 to 3000 m), and that the velocity of compressional waves in it increased from the value for sea water, 4900 ft./s (1.5 km/s), at the surface with an approximately constant gradient of 2.5/s to a limiting value of 8200 ft./s (2.5 km/s). Below the sedimentary layer there was a crystalline rock with compressional wave velocity of approximately 16500 ft./s (5.0 km/s) and of thickness varying between 8800 ft. (2700 m) and 11100 ft. (3400 m). The base of this layer was in both determinations at approximately 25500 ft. (7800 m) below sea-level. The lowest layer concerning which information was obtained gave a value for the compressional wave velocity of about 20500 ft./s (6.3 km/s), but was of undetermined thickness. The characteristics of the sedimentary layer were such as might be expected for a continuous succession of deep-sea sediments, the thickness on this basis being such as to indicate the long existence of the ocean in this area. On the other hand, it is possible that it represents a downwarped continental shelf. The layer below the sedimentary layer has a compressional wave velocity which is low for an igneous rock at this depth, and it is probable that it represents a crystalline sedimentary rock. From the evidence it is not possible to determine whether this rock is of continental or deep-sea origin. The lowest layer of these experiments is unlikely to have a constitution similar to that of the European granitic layer, since the compressional wave velocity in it would, on this hypothesis, be exceptionally high. The value is, however, close to that calculated by Jeffreys for the intermediate layer.


2011 ◽  
Vol 182 (5) ◽  
pp. 451-463 ◽  
Author(s):  
Pascal Le Roy ◽  
Claire Gracia-Garay ◽  
Pol Guennoc ◽  
Jean-François Bourillet ◽  
Jean-Yves Reynaud ◽  
...  

Abstract The geology of the Channel Western Approaches is a key to understand the post-rift evolution of the NW European continental margin in relation with the Europe/Africa collision. Despite considerable evidence of Tertiary tectonic inversion throughout the Channel basin, the structures and amplitudes of the tectonic movements remain poorly documented across the French sector of the Western Approaches. The effect of the tectonic inversion for the evolution of the “Channel River”, the major system that flowed into the English Channel during the Plio-Quaternary eustatic lowstands, also needs to be clarified. Its drainage basin was larger than the present-day English Channel and constituted the source of terrigenous fluxes of the Armorican and Celtic deep sea fans. A lack of high-resolution seismic data motivated the implementation of the GEOMOC and GEOBREST cruises, whose main results are presented in this paper. The new observations highlight the diachronism and the contrast in amplitudes of the deformations involved in the inversion of the French Western Approaches. The tectonic inversion can be described in two stages: a paroxysmal Paleogene stage including two episodes, Eocene (probably Ypresian) and Oligocene, and a more moderate Neogene stage subdivided into Miocene and Pliocene episodes, driven by the reactivation of the same faults. The deformations along the North Iroise fault (NIF) located at the termination of the Medio-Manche fault produced forced folds in the sedimentary cover above the deeper faults. The tectonic inversion generated uplift of about 700 m of the mid-continental shelf south of the NIF. The isochron map of the reflectors bounding the identified seismic sequences clearly demonstrates a major structural control on the geometry of the Neogene deposits. First, the uplift of the eastern part of the Iroise basin during the upper Miocene favoured the onset of a broad submarine delta system that developed towards the subsiding NW outer shelf. The later evolution of the ’palaeovalley’ network corresponding to the western termination of the “Channel River” exhibits a ’bayonet’ pattern marked by a zigzagging pattern of valleys, with alternating segments orientated N040oE and N070oE, controlled by Neogene faulting. The palaeovalley network could have begun during Reurevian or Pre-Tiglian sea-level lowstands, which exposed the entire shelf below the shelf edge. The amplitude of the sea-level fall is assumed to have been magnified by uplift of the Iroise basin, followed by later tilting of the outer shelf, as observed in many other examples documented along the North Atlantic margins.


2021 ◽  
pp. 117238
Author(s):  
Soeun Eo ◽  
Sang Hee Hong ◽  
Young Kyoung Song ◽  
Gi Myung Han ◽  
Seongbong Seo ◽  
...  

2015 ◽  
Vol 12 (10) ◽  
pp. 2953-2974 ◽  
Author(s):  
D. Archer

Abstract. A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. There is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere–ocean–terrestrial carbon cycle.


2018 ◽  
Vol 16 (3) ◽  
Author(s):  
Andréa T. Thomaz ◽  
L. Lacey Knowles

ABSTRACT The eastern coastal basins of Brazil are a series of small and isolated rivers that drain directly into the Atlantic Ocean. During the Pleistocene, sea-level retreat caused by glaciations exposed the continental shelf, resulting in enlarged paleodrainages that connected rivers that are isolated today. Using Geographic Information System (GIS), we infer the distribution of these paleodrainages, and their properties for the east Brazilian coast. Specifically, using elevation/bathymetric data for the largest sea-level retreats during the Pleistocene, the paleodrainages, their area and the number of contemporary basins connected by each palaeodrainage, was inferred. For the 145 inferred paleodrainages, total paleodrainage area is strongly correlated with the contemporary area encompassed by each paleodrainage, as well as with the number of contemporary basins encompassed by a paleodrainage. Differences in the continental shelf exposure along the coast affected the degree of past connectivity among contemporary rivers. With our results freely available, we discuss how paleodrainages have tremendous utility in biological studies, especially in regions with limited geologic data. With respect to the diverse ichthyofauna of the Brazilian coast, and its high endemism, we highlight how the inferred paleodrainages provide a backdrop to test hypotheses about the effect of past riverine connectivity on diversity patterns.


Author(s):  
Sven Zea ◽  
Gladys Bernal ◽  
Gloria López ◽  
Marion Weber ◽  
Rocío Del Pilar García-Urueña

In tropical seas there are submerged hard bottoms that harbor corals but that are not coralline in origin. This is the case for the “Banco de las Ánimas” sector in the continental shelf of the Gulf of Salamanca, Colombian Caribbean. In its upper portion (14–16 m in depth), there are low mounds of sandstone blocks and slabs, conforming reefs, colonized by coralline biota and sparse corals. To confirm their lithology an initial petrographic analysis was carried out, which showed the rocks are made up of fine-grained sands, mature in texture, cemented by dolomite. It is proposed that these reefs were formed in a beach–dune–lagoon system during an ancient sea level, similar to the recent coastal bar of Salamanca. In these high-evaporation, supratidal saline environments, they could have been formed as beach rocks or as eolianites, by aragonite cementation, modified later into dolomite. Whether the foundation of the deeper coral formations of the bankis also sandstone or in fact coralline, remains to be determined.


Sign in / Sign up

Export Citation Format

Share Document