On the thermal ionization of trapped electrons in ionic solids

The ground state of an electron trapped at a defect of the interstitial ion type in an ionic crystal is determined by a variation method in which the interaction between electron and lattice vibrations is treated on a dynamic basis. The results are com pared with static calculations using a self-consistent method, and it is shown that for certain ranges of the low- and high-frequency dielectric constants an appreciable difference in energy may occur.

Fröhlich has shown that a one-dimensional metal, at absolute zero, can exhibit certain of the properties of a superconductor when the interaction between the lattice vibrations and the electrons is sufficiently strong. The self-consistent method used by him is extended to finite temperatures, and the specific heat is calculated. It is shown that the model exhibits a second-order transition at a temperature which is related to the magnitude of the coupling constant. The approximations demand a coupling constant which is much larger than that of any real metal.


Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 50
Author(s):  
Charlotte Froese Fischer

The paper reviews the history of B-spline methods for atomic structure calculations for bound states. It highlights various aspects of the variational method, particularly with regard to the orthogonality requirements, the iterative self-consistent method, the eigenvalue problem, and the related sphf, dbsr-hf, and spmchf programs. B-splines facilitate the mapping of solutions from one grid to another. The following paper describes a two-stage approach where the goal of the first stage is to determine parameters of the problem, such as the range and approximate values of the orbitals, after which the level of accuracy is raised. Once convergence has been achieved the Virial Theorem, which is evaluated as a check for accuracy. For exact solutions, the V/T ratio for a non-relativistic calculation is −2.


1981 ◽  
Vol 36 (3) ◽  
pp. 272-275 ◽  
Author(s):  
Subal Chandra Saha ◽  
Sankar Sengupta

It is possible to reproduce the entire results of Pekeris et al. of different atomic parameters for the He atom by introducing (ll) type correlation in a self consistent variation perturbation procedure using the Hartree-Fock (HF) wavefunction as the zero-order wavefunction


2021 ◽  
Vol 119 (9) ◽  
pp. 092103
Author(s):  
Matthew Hilfiker ◽  
Ufuk Kilic ◽  
Megan Stokey ◽  
Riena Jinno ◽  
Yongjin Cho ◽  
...  

1974 ◽  
Vol 52 (9) ◽  
pp. 813-820 ◽  
Author(s):  
René Stringat ◽  
Jean-Paul Bacci ◽  
Marie-Hélène Pischedda

The strongly perturbed 1Π–X1Σ+ system of C80Se has been observed in the emission spectrum of a high frequency discharge through selenium and carbon traces in a neon atmosphere. The analysis of five bands yields, for the molecular constants of the ground state, the values Be″ = 0.5750 cm−1, [Formula: see text], αe″ = 0.00379 cm−1, re″ = 1.676 Å, ΔG″(1/2) = 1025.64 cm−1, and ΔG″(3/2) = 1015.92 cm−1. The numerous perturbations in the 1Π state prohibit the simple evaluation of the constants of the perturbed state and of the perturbing ones.


Sign in / Sign up

Export Citation Format

Share Document