The mechanisms of oxidation of formaldehyde and formic acid by ions of chromium (VI), vanadium (V) and cobalt (III)

The kinetics of oxidation of formaldehyde, formic acid and their deuterated isomers have been studied with chromic acid (part A) and also with vanadium (v), and cobalt (III) as oxidants (part B). In each case the reaction mechanism resembles that for the oxidation of a secondary alcohol by the same oxidant. Thus formaldehyde is oxidized in its hydrated form, H 2 C(OH) 2 . The quantitative study of kinetic and solvent effects leads to clarification of further details concerning secondary stages in the oxidations effected by chromic acid, whilst the determination of thermodynamic parameters for the oxidations by one electron abstracting reagents (part B) shows that any direct correlation between activation energies and kinetic isotope effects involves unwarrantable assumptions. It is probable that these reactions proceed through cyclic intermediate complexes.

1985 ◽  
Vol 63 (8) ◽  
pp. 2237-2240 ◽  
Author(s):  
Allan K. Colter ◽  
A. Gregg Parsons ◽  
Karen Foohey

The kinetics of oxidation of 10-methyl-9-phenylacridan (1(H)) and 9-deuterio-10-methyl-9-phenylacridan (1(D)) to 10-methyl-9-phenylacridinium ion (3) by eight oxidants have been investigated. The oxidants included the π-acceptors 1,4-benzoquinone (BQ), 7,7,8,8-tetracyanoquinodimethane (TCNQ), p-bromanil (BA), p-chloranil (CA), tetracyanoethylene (TCNE), 2,3-dicyano-1,4-benzoquinone (DCBQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in acetonitrile (AN), BQ in 50:50 (v/v) AN-water, and the one-electron oxidant tris(2,2′-bipyridyl)cobalt(III), [Formula: see text] in AN. The seven π acceptors cover a 109-fold range of reactivity from BQ to DDQ and the deuterium kinetic isotope effect varies from 11.9 (BQ in AN) to 5.8 (DDQ). For π acceptors (BQ, TCNQ, CA, TCNE, and DCBQ) previously investigated with 10-methylacridan (NMA), 1(H) is less reactive than NMA by factors ranging from 9.1 (BQ) to 1.7 × 102 (TCNE). The isotope effects and relative reactivities for the π acceptor oxidations are most simply explained by a one-step hydride transfer mechanism.


Author(s):  
Yasujiro Murata ◽  
Shih-Ching Chuang ◽  
Fumiyuki Tanabe ◽  
Michihisa Murata ◽  
Koichi Komatsu

We present our study on the recognition of hydrogen isotopes by an open-cage fullerene through determination of binding affinity of isotopes H 2 /HD/D 2 with the open-cage fullerene and comparison of their relative molecular sizes through kinetic-isotope-release experiments. We took advantage of isotope H 2 /D 2 exchange that generated an equilibrium mixture of H 2 /HD/D 2 in a stainless steel autoclave to conduct high-pressure hydrogen insertion into an open-cage fullerene. The equilibrium constants of three isotopes with the open-cage fullerene were determined at various pressures and temperatures. Our results show a higher equilibrium constant for HD into open-cage fullerene than the other two isotopomers, which is consistent with its dipolar nature. D 2 molecule generally binds stronger than H 2 because of its heavier mass; however, the affinity for H 2 becomes larger than D 2 at lower temperature, when size effect becomes dominant. We further investigated the kinetics of H 2 /HD/D 2 release from open-cage fullerene, proving their relative escaping rates. D 2 was found to be the smallest and H 2 the largest molecule. This notion has not only supported the observed inversion of relative binding affinities between H 2 and D 2 , but also demonstrated that comparison of size difference of single molecules through non-convalent kinetic-isotope effect was applicable.


1965 ◽  
Vol 43 (8) ◽  
pp. 2254-2258 ◽  
Author(s):  
C. C. Lee ◽  
Edward W. C. Wong

endo-Norbornyl-2-d p-bromobenzenesulfonate was synthesized and the isotope effects, as measured by kH/kD, were determined over a range of temperatures for solvolyses in 30% water – 70% dioxane, acetic acid, and formic acid. Values of kH/kD are of the order of 1.20. The data appear to indicate slightly higher isotope effects as the solvents are changed from aqueous dioxane to acetic acid to formic acid, as well as somewhat higher isotope effects at lower temperatures. Possible mechanistic implications of these results are presented. Relative titrimetric acetolysis rates, kexo/kendo, at different temperatures, and enthalpies and entropies of activation for these acetolyses are evaluated and discussed.


DYNA ◽  
2015 ◽  
Vol 82 (191) ◽  
pp. 183-193 ◽  
Author(s):  
Jorge Virgilio Rivera Gutiérrez

The study is based on the determination of the kinetic rates and assessment of self-purification of the Frio River, due to the uptake of organic load. The kinetic rates were calculated by applying differential and logarithmic methods on concentrations of water quality determinants present in each of the (7) reach of the river. The water system easily recovers the amount of oxygen, k<sub>d</sub>= 0.4, k<sub>a</sub> 3.2 d<sup>-1</sup>, only receives 27.7 Ton. d<sup>-1</sup>, the organic load, making high concentrations of carbon, ammonium and remain sediment. The length Influence of discharges, LIV- BOD yielded a mean per tranche of 10 km, compared to 3 km each way, means that the river can´t self- purification that need more length of travel. The study illustrates the modeling of the determinants of quality, developed by the QUAL2K, using the calculated rates.


1985 ◽  
Vol 63 (6) ◽  
pp. 1245-1249 ◽  
Author(s):  
John W. Bunting ◽  
John C. Brewer

The rates of reduction of a series of 1-(Z-benzyl)nicotinonitrile cations by a series of 1-(X-benzyl)-1,4-dihydronicotinamides have been studied at 25 °C in 20% CH3CN – 80% H2O (pH 7.0 (5 mM phosphate), ionic strength 1.0 (KCl)). Spectral studies indicate the formation of 1,4-dihydronicotinonitrile products, without the formation of the isomeric 1,2-dihydro- or 1,6-dihydro-nicotinamide intermediates. Second-order rate constants (k2) for these reductions are closely correlated with the Hammett σ constants for X and Z. Thus, for X = H, log k2 = 0.63σz − 1.05, while for Z = 4-CN, log k2 = −0.64σx − 0.65. The close correspondence between these ρx and ρz values indicates that charge neutralization on the nicotinonitrile cation exactly balances charge generation on the nicotinamide cation product in the rate-determining transition state. Thus the migrating hydrogen species is electrically neutral in the rate-determining transition state, which contrasts with the hydridic transition states previously reported in the reduction of isoquinolinium cations by 1,4-dihydronicotinamides. When 1-benzyl-4,4-dideuterio-1,4-dihydronicotinamide is used as the reductant, primary kinetic isotope effects of 3.0 and 2.7 are observed for the reduction of the 1-methylnicotinonitrile and 1-(4-cyanobenzyl)-nicotinonitrile cations, respectively. These data are evaluated in terms of the various mechanistic possibilities for hydride transfer.


Sign in / Sign up

Export Citation Format

Share Document