Periodic distributions of dislocations
First, explicit expressions are obtained for the state of stress and deformation due to a periodic distribution of dislocations with respect to three-dimensional space and time. Further, equilibrium conditions for continuously distributed dislocations are derived from the law of energy conservation. The conditions are applied to determine several equilibrium states of periodic distributions. It was found that the distributions of edge and screw dislocations must have a phase difference of ½π when all the Burgers vectors are limited to the one direction. A sudden application of constant stress will cause the dislocations to move spontaneously to their new equilibrium positions. Also, an expression for dislocation velocity is established. In addition, expressions for internal stresses due to the periodic distribution of dislocations are used to find the stress field induced by a Frank network of dislocations. It was found that the normal stress acting on planes parallel to the network has a maximum value at a distance equal to one-half of the edge length of the hexagon of the net. The stress is proportional to the sum of the edge components of the three Burgers vectors at a node of the network, and decreases exponentially with distance from the network plane.