The non-isothermal oxidation of 2 -methylpentane. - III. The reaction at high pressure

The non-isothermal oxidation of 2-methylpentane has been studied at pressures of 1-4 MN m -2 and temperatures of 440 to 660 °C in an arrested-piston rapid-compression machine. The variations with pressure and temperature of the induction periods leading to cool-flame reaction and hot ignition have been determined, and the products of the reaction have been analysed by gas-liquid chromatography. At high temperatures and pressures the cool-flame reaction occurs by a free-radical chain process in which homogeneous isomerization and subsequent decomposition of alkylperoxy radicals propagate the chain. The resulting propa­gation cycle is substantially the same as that which has been established at lower tempera­tures and subatmospheric pressures. At high temperatures and pressures the reaction is, however, even more unselective, and oxidation of β -hydroperoxyalkyl radicals competes more successfully with their unimolecular decomposition, thus leading to the formation of β -ketoaldehydes. These compounds, together with the conjugated unsaturated carbonyl compounds, account quantitatively for the absorption of ultraviolet light by reacting 2-methylpentane/air mixtures. The mechanism of chain branching in the cool-flame reaction probably involves the pyrolysis of hydroperoxides. In the second stage of two-stage ignition, the propagation cycle is the same as that occurring in the cool flame but the important difference is that the cool flame has formed substantial concentrations of compounds with labile hydrogen atoms; these react readily with alkylperoxy radicals to form hydroperoxides, the pyrolysis of which again branches the chain.

1977 ◽  
Vol 55 (10) ◽  
pp. 1644-1652 ◽  
Author(s):  
Joseph Hector Bernard Chenier ◽  
James Anthony Howard ◽  
John Charles Tait

The initial reaction of cupric dialkyldithiophosphates and dialkyldithiocarbamates with tert-butyl hydroperoxide and α-cumyl hydroperoxide is a free radical chain process. Initiation is achieved by a redox reaction between the complex and the hydroperoxide to give alkoxy and alkylperoxy radicals. The alkoxy radicals then abstract a hydrogen from excess hydroperoxide to give alkylperoxy radicals. The cupric complexes are converted to copper sulphate by reaction with peroxy radicals while the hydroperoxide is reduced to alcohol. About 5 mol of hydroperoxide are decomposed by each mole of complex. The decomposition of tert-butyl hydroperoxide then stops whereas complete destruction of α-cumene hydroperoxide occurs by a heterogeneous ionic reaction.The kinetics of the initial reaction are second-order for both complexes. The dithiophosphate reaction is first-order in each reactant while the dithiocarbamate reaction is zero-order in the complex concentration and second-order in the hydroperoxide concentration. Simple kinetics, however, only hold for the initial rates of complex disappearance. Total dithiophosphate decomposition exhibits three stages, an initial fast reaction followed by an induction period and a rapid third stage. The concentration–time profile for dithiocarbamate decomposition is quite different and the overall rate of reaction in some instances increases as the complex concentration decreases.


New or reworked, and in some cases corrected, experimental data confirm that in the decomposition of n -pentane there appear to be, in addition to the radical chain process, two modes of unimolecular reaction. One conforms approximately to the requirements of the classical theory with localization of activation energy in a critical bond (tentatively assumed to be a C—C bond), the non-exponential factor being the same order as a molecular vibration frequency. The other seems to involve a whole series of alternative transition states corresponding to different distributions of a given total energy among degrees of freedom thought to be probably movements of hydrogen atoms. Various possible implications about the gain, loss and redistribution of energy in the molecule are briefly considered.


The products of all the modes of non-isothermal oxidation of 2-methylpentane by molecu­lar oxygen and of the attendant slow combustion reactions have been analysed by gas-liquid chromatographic and chemical methods. Oxidation in the cool-flame temperature range produces more than forty molecular species, including O -heterocycles, peroxides, alkenes and saturated and unsaturated aldehydes and ketones. A good qualitative description of the mode of formation of this complex mixture and of its variation with temperature is afforded by the alkylperoxy radical isomerization theory. This theory is developed semi-quantitatively and is in reasonable agreement with the quantitative experimental results. It is concluded that chain propagation in the cool-flame region occurs predominantly by attack on the fuel by hydroxyl radicals; the resulting oxidation is rapid and unselective. In contrast, at temperatures too low for cool-flame formation alkylperoxy radicals are the likely chain-propagating species, whereas at temperatures above the upper cool-flame limit hydroperoxy radicals probably propagate the chain. The mechanism of chain branch­ing is not clear but it is established that, in the cool-flame region, peroxidic compounds are involved.


1990 ◽  
Vol 93 (8) ◽  
pp. 5700-5708 ◽  
Author(s):  
Jeunghee Park ◽  
Richard Bersohn ◽  
Izhack Oref

In the first paper of this series (Burgoyne 1937) the kinetics of the isothermal oxidation above 400° C of several aromatic hydrocarbons was studied. The present communication extends this work to include the phenomena of ignition in the same temperature range, whilst the corresponding reactions below 400° C form the subject of further investigations now in progress. The hydrocarbons at present under consideration are benzene, toluene, ethylbenzene, n -propylbenzene, o-, m - and p -xylenes and mesitylene.


A detailed mathematical model of the non-isothermal oxidation of acetaldehyde has been found to give a realistic simulation of (i) single and multiple cool flames, their limits, amplitudes and induction periods; (ii) two-stage ignition; and (iii) the negative temperature coefficient for the maximum rate of slow combustion. A simplified form of the model, valid over a limited range of conditions, has been subjected to mathematical analysis to provide interpretations of the effects simulated by the detailed model. It is concluded that cool flames are thermokinetic effects often, but not exclusively, of an oscillatory nature, and that a satisfactory account of cool-flame phenomena must necessarily take reactant consumption into account.


Sign in / Sign up

Export Citation Format

Share Document