Uniform asymptotic representation of a field of reflected and head waves

A uniform asymptotic expansion for integrals of the type ʃ +∞ -∞ u ½ F ( u ) exp {i kψ ( u )}d u has been obtained in terms of generalized Airy functions, which are the solutions of the equation V"( z )+ z 2 V ( z ) = 0. This result is applied to the construction of a uniform asymptotic representation of a solution of the wave equation in the case of reflexion of a spherical wave from a plane boundary in a region including a critical ray. This asymptotic series may be divided into two series corresponding to reflected and head waves respectively, which are transformed into the ray series for these waves far from the critical ray and reduced to the expressions given by Brekhovskikh (1960) in the vicinity of the critical ray.

Author(s):  
W. G. C. Boyd

SynopsisThis paper is concerned with high-frequency scattering in a medium, the square of whose refractive index varies linearly with height from a plane boundary. Two asymptotic methods are examined, namely the method of stationary phase and evaluation by residue series. The first of these corresponds to geometric optics and gives the high-frequency field in the illuminated region, while the second complements the first in the sense that if thsre is no point of stationary phase, the residue series is an asymptotic expansion of the field. The Airy functions in the residue series can be replaced by their asymptotic developments in terms of exponentials, and when this is done only the first term or first creeping wave is of genuine significance.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Dmytro Vasylyev

AbstractA new analytical approximation for the Chapman mapping integral, $${\text {Ch}}$$ Ch , for exponential atmospheres is proposed. This formulation is based on the derived relation of the Chapman function to several classes of the incomplete Bessel functions. Application of the uniform asymptotic expansion to the incomplete Bessel functions allowed us to establish the precise analytical approximation to $${\text {Ch}}$$ Ch , which outperforms established analytical results. In this way the resource consuming numerical integration can be replaced by the derived approximation with higher accuracy. The obtained results are useful for various branches of atmospheric physics such as the calculations of optical depths in exponential atmospheres at large grazing angles, physical and chemical aeronomy, atmospheric optics, ionospheric modeling, and radiative transfer theory.


1986 ◽  
Vol 102 (3-4) ◽  
pp. 253-257 ◽  
Author(s):  
B. J. Harris

SynopsisIn an earlier paper [6] we showed that if q ϵ CN[0, ε) for some ε > 0, then the Titchmarsh–Weyl m(λ) function associated with the second order linear differential equationhas the asymptotic expansionas |A| →∞ in a sector of the form 0 < δ < arg λ < π – δ.We show that if the real valued function q admits the expansionin a neighbourhood of 0, then


1979 ◽  
Vol 16 (7) ◽  
pp. 1388-1401 ◽  
Author(s):  
Larry W. Marks ◽  
F. Hron

The classical problem of the incidence of spherical waves on a plane boundary has been reformulated from the computational point of view by providing a high frequency approximation to the exact solution applicable to any seismic body wave, regardless of the number of conversions or reflections from the bottoming interface. In our final expressions the ray amplitude of the interference reflected-head wave is cast in terms of a Weber function, the numerical values of which can be conveniently stored on a computer disk file and retrieved via direct access during an actual run. Our formulation also accounts for the increase of energy carried by multiple head waves arising during multiple reflections of the reflected wave from the bottoming interface. In this form our high frequency expression for the ray amplitude of the interference reflected-head wave can represent a complementary technique to asymptotic ray theory in the vicinity of critical regions where the latter cannot be used. Since numerical tests indicate that our method produces results very close to those obtained by the numerical integration of the exact solution, its combination with asymptotic ray theory yields a powerful technique for the speedy computation of synthetic seismograms for plane homogeneous layers.


2003 ◽  
Vol 01 (02) ◽  
pp. 213-241 ◽  
Author(s):  
R. WONG ◽  
Y.-Q. ZHAO

There are now several ways to derive an asymptotic expansion for [Formula: see text], as n → ∞, which holds uniformly for [Formula: see text]. One of these starts with a contour integral, involves a transformation which takes this integral into a canonical form, and makes repeated use of an integration-by-parts technique. There are two advantages to this approach: (i) it provides a recursive formula for calculating the coefficients in the expansion, and (ii) it leads to an explicit expression for the error term. In this paper, we point out that the estimate for the error term given previously is not sufficient for the expansion to be regarded as genuinely uniform for θ near the origin, when one takes into account the behavior of the coefficients near θ = 0. Our purpose here is to use an alternative method to estimate the remainder. First, we show that the coefficients in the expansion are bounded for [Formula: see text]. Next, we give an estimate for the error term which is of the same order as the first neglected term.


2012 ◽  
Vol 44 (2) ◽  
pp. 391-407 ◽  
Author(s):  
Anand Bhaskar ◽  
Yun S. Song

Obtaining a closed-form sampling distribution for the coalescent with recombination is a challenging problem. In the case of two loci, a new framework based on an asymptotic series has recently been developed to derive closed-form results when the recombination rate is moderate to large. In this paper, an arbitrary number of loci is considered and combinatorial approaches are employed to find closed-form expressions for the first couple of terms in an asymptotic expansion of the multi-locus sampling distribution. These expressions are universal in the sense that their functional form in terms of the marginal one-locus distributions applies to all finite- and infinite-alleles models of mutation.


Author(s):  
Kusum Soni

SynopsisA uniform asymptotic expansion of the Laplace integrals ℒ(f, s) with explicit remainder terms is given. This expansion is valid in the whole complex s−plane. In particular, for s = −ix, it provides the Fourier integral expansion.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Nguyen Huu Nhan ◽  
Le Thi Phuong Ngoc ◽  
Nguyen Thanh Long

We consider the Robin-Dirichlet problem for a nonlinear wave equation of Kirchhoff-Carrier type. Using the Faedo-Galerkin method and the linearization method for nonlinear terms, the existence and uniqueness of a weak solution are proved. An asymptotic expansion of high order in a small parameter of a weak solution is also discussed.


We develop a technique for systematically reducing the exponentially small (‘superasymptotic’) remainder of an asymptotic expansion truncated near its least term, for solutions of ordinary differential equations of Schrödinger type where one transition point dominates. This is achieved by repeatedly applying Borel summation to a resurgence formula discovered by Dingle, relating the late to the early terms of the original expansion. The improvements form a nested sequence of asymptotic series truncated at their least terms. Each such ‘hyperseries’ involves the terms of the original asymptotic series for the particular function being approximated, together with terminating integrals that are universal in form, and is half the length of its predecessor. The hyperasymptotic sequence is therefore finite, and leads to an ultimate approximation whose error is less than the square of the original superasymptotic remainder. The Stokes phenomenon is automatically and exactly incorporated into the scheme. Numerical computations confirm the efficacy of the technique.


Sign in / Sign up

Export Citation Format

Share Document