The measurement of rapid rate processes by kinetic spectroscopy during a photolysis flash; vibrational relaxation of NO X 2 II from levels v 2

The recording of transient changes in optical density that take place during the period of a photolysis flash can, in principle, allow measurement of the kinetics of photo-processes having half-lives an order of magnitude less than the rise or decay time of the flash itself. The construction and use of a sensitive, ‘split-beam’ kinetic spectrophotometer is described, which permits the detection of transient changes in optical density > 0.01 and the measurement of half-lives >1 (us. The apparatus has been used to study the relaxation of NOX 2 II from its first and second excited vibrational levels in the presence of N 2 0 or CH4 and/or Ar. The efficiency of vibrational energy exchange with N 2 0 decreases with the vibrational quantum number of the excited level and this is shown to be consistent with the reduction in the vibrational spacing caused by anharmonicity. The measured collision numbers are in good agreement with those calculated on the baste of an empirical correlation (Callear 1965).

2017 ◽  
Vol 17 (16) ◽  
pp. 9751-9760 ◽  
Author(s):  
Peter A. Panka ◽  
Alexander A. Kutepov ◽  
Konstantinos S. Kalogerakis ◽  
Diego Janches ◽  
James M. Russell ◽  
...  

Abstract. In the 1970s, the mechanism of vibrational energy transfer from chemically produced OH(ν) in the nighttime mesosphere to the CO2(ν3) vibration, OH(ν) ⇒ N2(ν) ⇒ CO2(ν3), was proposed. In later studies it was shown that this "direct" mechanism for simulated nighttime 4.3 µm emissions of the mesosphere is not sufficient to explain space observations. In order to better simulate these observations, an additional enhancement is needed that would be equivalent to the production of 2.8–3 N2(1) molecules instead of one N2(1) molecule in each quenching reaction of OH(ν) + N2(0). Recently a new "indirect" channel of the OH(ν) energy transfer to N2(ν) vibrations, OH(ν) ⇒ O(1D) ⇒ N2(ν), was suggested and then confirmed in a laboratory experiment, where its rate for OH(ν = 9) + O(3P) was measured. We studied in detail the impact of the "direct" and "indirect" mechanisms on CO2(ν3) and OH(ν) vibrational level populations and emissions. We also compared our calculations with (a) the SABER/TIMED nighttime 4.3 µm CO2 and OH 1.6 and 2.0 µm limb radiances of the mesosphere–lower thermosphere (MLT) and (b) with ground- and space-based observations of OH(ν) densities in the nighttime mesosphere. We found that the new "indirect" channel provides a strong enhancement of the 4.3 µm CO2 emission, which is comparable to that obtained with the "direct" mechanism alone but assuming an efficiency that is 3 times higher. The model based on the "indirect" channel also produces OH(ν) density distributions which are in good agreement with both SABER limb OH emission observations and ground and space measurements. This is, however, not true for the model which relies on the "direct" mechanism alone. This discrepancy is caused by the lack of an efficient redistribution of the OH(ν) energy from higher vibrational levels emitting at 2.0 µm to lower levels emitting at 1.6 µm. In contrast, the new  indirect  mechanism efficiently removes at least five quanta in each OH(ν ≥ 5) + O(3P) collision and provides the OH(ν) distributions which agree with both SABER limb OH emission observations and ground- and space-based OH(ν) density measurements. This analysis suggests that the important mechanism of the OH(ν) vibrational energy relaxation in the nighttime MLT, which was missing in the emission models of this atmospheric layer, has been finally identified.


2006 ◽  
Vol 24 (11) ◽  
pp. 2823-2839 ◽  
Author(s):  
V. A. Yankovsky ◽  
R. O. Manuilova

Abstract. The traditional kinetics of electronically excited products of O3 and O2 photolysis is supplemented with the processes of the energy transfer between electronically-vibrationally excited levels O2(a1Δg, v) and O2(b1Σ+g, v), excited atomic oxygen O(1D), and the O2 molecules in the ground electronic state O2(X3Σg−, v). In contrast to the previous models of kinetics of O2(a1Δg) and O2 (b1Σ+g), our model takes into consideration the following basic facts: first, photolysis of O3 and O2 and the processes of energy exchange between the metastable products of photolysis involve generation of oxygen molecules on highly excited vibrational levels in all considered electronic states – b1Σ+g, a1Δg and X3Σg−; second, the absorption of solar radiation not only leads to populating the electronic states on vibrational levels with vibrational quantum number v equal to 0 – O2(b1Σ+g, v=0) (at 762 nm) and O2(a1Δg, v=0) (at 1.27 µm), but also leads to populating the excited electronic–vibrational states O2(b1Σ+g, v=1) and O2(b1Σ+g, v=2) (at 689 nm and 629 nm). The proposed model allows one to calculate not only the vertical profiles of the O2(a1Δg, v=0) and O2(b1Σ


1976 ◽  
Vol 31 (10) ◽  
pp. 1203-1209 ◽  
Author(s):  
Willi Janiesch ◽  
Helmut Ulrich ◽  
Peter Hess

Abstract The vibrational relaxation time for pure SiH4 is 0.10, 0.083 and 0.072 μsec atm (±30%) at 295 K, 375 K and 462 K. For SiH4 diluted in He, D2 and H2 the corresponding numbers are 0.16, 0.081 and 0.031 μsec atm (± 30%) at 295 K. The binary two-level theory has been used to deter-mine the four V -R, T rates in the system SiH4 -CH4, and the rate for V-V exchange between SiH4 and CH4 from experimental data. From the Schwartz-Slawsky-Herzfeld-formula for V -T and V -V, T processes an equation is derived describing V -R and V -V, R energy exchange. The different models are compared with experimental data, especially with those found for the system SiH4 -CH4.


The flash photolysis of chlorine dioxide or of nitrogen dioxide in a great excess of inert gasyields oxygen molecules in their electronic ground states with up to eight quanta of vibrational energy. By a study of the reaction kinetics of the two systems, it is concluded that these excited molecules have their origin in the reactions O + NO 2 = NO + O 2 and O + CIO 2 = CIO + O 2 respectively. Thus, for the first time we have available a very convenient method of studying the collisional transfer and degradation of vibrational energy from molecules in the higher vibrational levels of the ground state and some preliminary measurements of the efficiency of deactivation by various molecules are given. It is concluded that the energy is removed most readily either when there is near resonance of the vibrational levels with those of the oxygen, or by free radicals. Some of the reactions of the chlorine oxides present are also discussed.


Sign in / Sign up

Export Citation Format

Share Document