The study of energy transfer by kinetic spectroscopy I. The production of vibrationally excited oxygen

The flash photolysis of chlorine dioxide or of nitrogen dioxide in a great excess of inert gasyields oxygen molecules in their electronic ground states with up to eight quanta of vibrational energy. By a study of the reaction kinetics of the two systems, it is concluded that these excited molecules have their origin in the reactions O + NO 2 = NO + O 2 and O + CIO 2 = CIO + O 2 respectively. Thus, for the first time we have available a very convenient method of studying the collisional transfer and degradation of vibrational energy from molecules in the higher vibrational levels of the ground state and some preliminary measurements of the efficiency of deactivation by various molecules are given. It is concluded that the energy is removed most readily either when there is near resonance of the vibrational levels with those of the oxygen, or by free radicals. Some of the reactions of the chlorine oxides present are also discussed.

The photolytic decomposition of ozone has been further investigated using the technique of flash photolysis. Earlier results have been extended and a detailed mechanism for the production of vibrationally excited oxygen molecules put forward. Comparative studies of the decomposition with and without traces of water present have shown that the 1 D oxygen atom must be responsible for the chain reaction in both cases. When dry ozone is photolyzed under isothermal conditions, absorption due to vibrationally excited oxygen molecules in their electronic ground states is detected. These molecules are produced by the reaction O + O 3 → O* 2 + O 2 with up to 17 quanta of vibrational energy, and are rotationally cold. When water is present, however, no absorption due to O* 2 occurs but strong OH absorption is seen and it is shown that OH radicals are responsible for propagating the chain reaction in this case. These radicals can only be formed by the reaction O( 1 D ) + H 2 O → 2OH + O 2 , leading to chain branching. It is an interesting observation that this reaction must be preferred to that with ozone stated above. This conclusion will be examined later. Reactions of 1 D oxygen atoms with fluorine, chlorine, bromine and hydrogen have also been investigated.


From measurements of the absolute concentrations of vibrationally excited oxygen produced in levels v" = 4 to v" = 13, it is concluded that ca . 20 % of the exothermicity of the reaction O( 3 P) + NO 2 → NO + O + 2 ( v" ≤11) (1) appears initially as vibrational energy in oxygen. Vibrationally excited nitric oxide ( v" = 1, 2) is also observed and may be produced in this reaction or in the primary process NO 2 + hv → NO ( v" ≤ 2) + O( 3 P). More highly excited oxygen ( v" ≤ 15), with energy exceeding the exothermicity of the reaction, is produced in reaction (1) when the NO 2 is first excited by radiation above the dissociation limit near 400 nm. The excited NO 2 thus produced can also transfer energy to nitric oxide. NO 2 * + NO( v" = 0) → NO 2 + NO( v" = 1).


1976 ◽  
Vol 54 (10) ◽  
pp. 1069-1076 ◽  
Author(s):  
J. C. D. Brand ◽  
J. L. Hardwick ◽  
K. E. Teo

Measurements are reported of the resonance fluorescence of 15N16O2 and 14N18O2 excited by the 488,496, and 514 nm radiation of an Ar+ laser. The frequency displacements in these spectra are consistent with values calculated previously, using potential constants for the electronic ground state of NO2 derived from the rotational and vibrational constants of NO2 and 15N16O2 but containing no information from N18O2 spectra; the agreement obtained for the latter isotope is therefore a partial test of the potential field.In these spectra, fluorescence occurs from vibronic B2 levels of the Ã2B2 state possessing 7500–8500 cm−1 of vibrational energy. A number of examples are described in which the emission from these vibrationally excited levels shows an anomalous intensity distribution or K-selection rule (e.g., ΔK = ±2) as a result of Coriolis and/or spin–orbit coupling between vibrational levels of the upper electronic state.


The production and decay of the CIO radical and of vibrationally excited oxygen following the isothermal flash photolysis of chlorine dioxide has been studied. From their dependence on flash energy and from the effects of added chlorine, oxygen and chlorine monoxide on the system, the following mechanism and rate constants are proposed: CIO 2 + hv → CIO + O 2CIO → CI 2 + O 2 K 1 = 2.7 x 10 7 l mol -1 s -1 O + CIO 2 → CIO + O 2 * ( v " ≼ 15) k 3 = 3.0 x 10 10 l mol -1 s -1 O + CIO → CI + O 2 * ( v " ≼ 14) k 4 = 7.0 x 10 9 l mol -1 s -1 CIO (CIO 2 ) + O 2 * ( v " = n ) → CIO (CIO 2 ) + O 2 * ( v " < n ) k 10 ( v " = 12) = 2 x 10 8 l mol -1 s -1 CI + O 2 * ( v " = n ) → CI + O 2 * ( v " < n ) k 11 ( v " = 12) = 7 x 10 9 l mol -1 s -1 O + O 2 * ( v " = n ) → O + O 2 * ( v " < n ) k 12 ( v " = 12) = 2 x 10 10 l mol -1 s -1 O + Cl 2 O → 2CIO k 6 = 5.2 x 10 9 l mol -1 s -1 The rate constants k 10 , k 11 and k 12 for O 2 * (v" = 6) and the relative values of k 3 for various vibrational levels have also been measured. Studies of the flash photolysis of mixtures of chlo­rine monoxide and chlorine dioxide and of chlorine and oxygen have yielded values of k 1 in agreement with that given above. The extinction coefficients of the CIO radical at 257.7, 277.2 and 292 nm were found to be 1150, 1700 and 1050 l mol -1 cm -1 respectively.


1960 ◽  
Vol 38 (10) ◽  
pp. 1769-1779 ◽  
Author(s):  
N. Basco ◽  
R. G. W. Norrish

Observations on the production of vibrationally excited oxygen molecules in the flash photolysis of nitrogen peroxide and of ozone have extended previous work on these systems. In the case of nitrogen peroxide it has been shown that oxygen molecules possessing the entire exothermicity of the reaction in the form of vibrational energy are produced. A new class of reactions is reported in which vibrationally excited hydroxyl radicals are produced under isothermal conditions by the reaction O(1D) + RH → OH* + R, in which the energy for excitation is contributed by the electronic energy of the oxygen atom.These and other cases of non-equilibrated energy distributions in reaction products and theories accounting for this phenomenon are reviewed.


The rate constants for the production of vibrationally excited oxygen in the reactions O + CIO 2 -----» O 2 (v''≤ 15) + CIO O + CIO -----» O 2 (v''≤ 14) + Cl are approximately equal for all values of v" ≤ 13. The oxygen initially receives 45+10% of the heat of reaction in the form of vibrational energy. Extinction coefficients have been measured for several bands of the C-X, D -X and E -X systems of CIO 2 in the vacuum ultraviolet. Five new systems are reported between 141 and 128 nm. Two of these, F-X and J-X , and the C-X system form a Rydberg series for an ionization potential of 10.36 eV.


2006 ◽  
Vol 24 (11) ◽  
pp. 2823-2839 ◽  
Author(s):  
V. A. Yankovsky ◽  
R. O. Manuilova

Abstract. The traditional kinetics of electronically excited products of O3 and O2 photolysis is supplemented with the processes of the energy transfer between electronically-vibrationally excited levels O2(a1Δg, v) and O2(b1Σ+g, v), excited atomic oxygen O(1D), and the O2 molecules in the ground electronic state O2(X3Σg−, v). In contrast to the previous models of kinetics of O2(a1Δg) and O2 (b1Σ+g), our model takes into consideration the following basic facts: first, photolysis of O3 and O2 and the processes of energy exchange between the metastable products of photolysis involve generation of oxygen molecules on highly excited vibrational levels in all considered electronic states – b1Σ+g, a1Δg and X3Σg−; second, the absorption of solar radiation not only leads to populating the electronic states on vibrational levels with vibrational quantum number v equal to 0 – O2(b1Σ+g, v=0) (at 762 nm) and O2(a1Δg, v=0) (at 1.27 µm), but also leads to populating the excited electronic–vibrational states O2(b1Σ+g, v=1) and O2(b1Σ+g, v=2) (at 689 nm and 629 nm). The proposed model allows one to calculate not only the vertical profiles of the O2(a1Δg, v=0) and O2(b1Σ


1970 ◽  
Vol 48 (18) ◽  
pp. 2919-2930 ◽  
Author(s):  
P. N. Clough ◽  
J. C. Polanyi ◽  
R. T. Taguchi

The combination–elimination reaction CH3 + CF3 → CH3CF3† → CH2CF2 + HF has been studied in a fast-flow system. Infrared chemiluminescence arising from the HF product has been observed from vibrational levels v = 1–4, and relative rate constants, k(v), have been obtained for HF formation in these levels. A study has also been made of the reaction CH2CF2 + Hg*(63P1) → CHCF + HF + Hg(61S0), which has been found to produce vibrationally-excited HF. Relative rate constants k(v) for vibrational levels v = 1–4 have been obtained. It appears that channelling of the potential energy into HF vibration, in the course of the elimination step, is more efficient in the first than in the second of these reactions. In the second reaction HF is eliminated with considerable rotational excitation.


Vibrational energy transfer and a chemical reaction between nitric oxide and the cyanogen radical have been studied by flash photolysing cyanogen and cyanogen bromide in the presence of nitric oxide. The product of the chemical reaction is, at least in part, the unstable compound nitrosyl cyanide NOCN and the rate constant is 2 x 10 12 ml. mole -1 s -1 or 1 x 10 17 ml. mole -2 s -1 with nitrogen as third body. The compound has a continuous absorption in the ultra-violet and yields vibrationally excited nitric oxide on photolysis. Vibrationally excited cyanogen radicals produced by means of electronic excitation of the radical produce vibrational excitation of the nitric oxide through near resonance energy exchange. Vibrational equilibrium is reached by nitric oxide through further resonance exchanges: CN + NO → NOCN, NOCN + hv → N O ( v > 0) + CN, NO ( v = 0) + CN ( v = n ) → NO ( v = 1) + CN ( v = n – 1 ) , NO ( v = 1) + CN ( v = m ) → NO ( v = 2) + CN ( v = m –1 ), 2NO { v = 1) ⇌ NO ( v = 2) + NO ( v = 0), NO ( v = 2) +NO ( v = 1) ⇌ NO ( v = 3) + NO { v = 0), etc.


The recording of transient changes in optical density that take place during the period of a photolysis flash can, in principle, allow measurement of the kinetics of photo-processes having half-lives an order of magnitude less than the rise or decay time of the flash itself. The construction and use of a sensitive, ‘split-beam’ kinetic spectrophotometer is described, which permits the detection of transient changes in optical density > 0.01 and the measurement of half-lives >1 (us. The apparatus has been used to study the relaxation of NOX 2 II from its first and second excited vibrational levels in the presence of N 2 0 or CH4 and/or Ar. The efficiency of vibrational energy exchange with N 2 0 decreases with the vibrational quantum number of the excited level and this is shown to be consistent with the reduction in the vibrational spacing caused by anharmonicity. The measured collision numbers are in good agreement with those calculated on the baste of an empirical correlation (Callear 1965).


Sign in / Sign up

Export Citation Format

Share Document