Nonlinear behaviour of a finite amplitude electron plasma wave - IV. Decay to ion cyclotron waves

Plasma in a magnetic field displays low frequency modes near the ion cyclotron frequency for waves propagating at an angle to the magnetic field. These modes are only slightly modified in a bounded plasma, and therefore can be excited by nonlinear decay of electron plasma waves which also propagate at an angle to the magnetic field. The nonlinearly generated low frequency mode has been identified experimentally as an ion cyclotron wave by stimulating the decay. The resonant matching conditions have also been demonstrated.

1978 ◽  
Vol 19 (2) ◽  
pp. 237-252 ◽  
Author(s):  
J. P. Hauck ◽  
H. Böhmer ◽  
N. Rynn ◽  
Gregory Benford

Ion-cyclotron waves are excited by cesium and potassium ion beams in cesium and potassium Q-machine plasmas. The ion beams are injected along the magnetic field with care to avoid beam transverse velocities. The observed ion-cyclotron mode frequencies are below those driven by electron currents. These resonant instabilities are convective in character with small spatial growth rates ki/kr ≃ 0.05. Plasma ion heating is observed and is consistent with a model in which mode amplitudes are saturated by diffusion effects.


1991 ◽  
Vol 45 (3) ◽  
pp. 389-406 ◽  
Author(s):  
K. P. Wessen ◽  
N. F. Cramer

The dispersion relation for low-frequency surface waves at a current sheet between two magnetized plasmas is derived using the cold-plasma dielectric tensor with finite ion-cyclotron frequency. The magnetic field direction is allowed to change discontinuously across the sheet, but the plasma density remains constant. The cyclotron frequency causes a splitting of the dispersion relation into a number of mode branches with frequencies both less than and greater than the ion-cyclotron frequency. The existence of these modes depends in particular upon the degree of magnetic field discontinuity and the direction of wave propagation in the sheet relative to the magnetic field directions. Sometimes two modes can exist for the same direction of propagation. The existence of modes undamped by Alfvén resonance absorption is predicted. Analytical solutions are obtained in the low-frequency and magnetic-field-reversal limits. The solutions are obtained numerically in the general case.


Computations of the evolution of the electron distribution function in a plasma subsequent to the excitation of a constant finite amplitude electron plasma wave show that the system is stable for plasma parameters for which under experimental conditions the sideband instability is found to be excited. When the time (or space) variation of wave amplitude is included a group of particles initially trapped is detrapped and then behaves like an electron beam passing through the plasma. The experimental dispersion of test waves in a low density plasma is compared with theoretical predictions for parameters given by the detrapping model. Further, measurements of the electron distribution function in the presence of a finite amplitude wave as a function of position, wave amplitude, and wave frequency, show features which are consistent only with a detrapped beam.


2021 ◽  
Author(s):  
Chen Shi ◽  
Jinsong Zhao ◽  
Jia Huang ◽  
Tieyan Wang ◽  
Dejin Wu ◽  
...  

<p>Magnetic flux ropes can play important roles in transferring the mass, momentum, and energy in the interplanetary environment and in affecting space weather. Small-scale flux ropes (SFRs) are common in the interplanetary environment. However, SFRs with medium and high Alfvénicity are generally discarded in previous identification procedures. Using Parker Solar Probe measurements, we identify an SFR event with medium Alfvénicity in the inner heliosphere (at ~ 0.2 au). Based on high correlations between the magnetic field and velocity fluctuations, we show Alfvénic waves arising inside such SFR. We also show occurrence of quasi-monochromatic electromagnetic waves at the leading and trailing edges of this SFR. These waves are well explained by the outward-propagating ion-cyclotron waves, which have wave frequencies ~ 0.03 - 0.3 Hz and wavelengths ~ 60 - 2000 km in the plasma frame. Furthermore, we show that the power spectral density of the magnetic field in SFR middle region follows the power-law distribution, where the spectral index changes from -1.5 (f <~ 1 Hz) to -3.3 (f >~ 1 Hz). These findings would motivate developing an automated program to identify SFRs with medium and high Alfvénicity from Alfvénic waves structures.</p>


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1395
Author(s):  
Danila Kostarev ◽  
Dmitri Klimushkin ◽  
Pavel Mager

We consider the solutions of two integrodifferential equations in this work. These equations describe the ultra-low frequency waves in the dipol-like model of the magnetosphere in the gyrokinetic framework. The first one is reduced to the homogeneous, second kind Fredholm equation. This equation describes the structure of the parallel component of the magnetic field of drift-compression waves along the Earth’s magnetic field. The second equation is reduced to the inhomogeneous, second kind Fredholm equation. This equation describes the field-aligned structure of the parallel electric field potential of Alfvén waves. Both integral equations are solved numerically.


2005 ◽  
Vol 23 (8) ◽  
pp. 2803-2811 ◽  
Author(s):  
J. B. Cao ◽  
Z. X. Liu ◽  
J. Y. Yang ◽  
C. X. Yian ◽  
Z. G. Wang ◽  
...  

Abstract. LFEW is a low frequency electromagnetic wave detector mounted on TC-2, which can measure the magnetic fluctuation of low frequency electromagnetic waves. The frequency range is 8 Hz to 10 kHz. LFEW comprises a boom-mounted, three-axis search coil magnetometer, a preamplifier and an electronics box that houses a Digital Spectrum Analyzer. LFEW was calibrated at Chambon-la-Forêt in France. The ground calibration results show that the performance of LFEW is similar to that of STAFF on TC-1. The first results of LFEW show that it works normally on board, and that the AC magnetic interference of the satellite platform is very small. In the plasmasphere, LFEW observed the ion cyclotron waves. During the geomagnetic storm on 8 November 2004, LFEW observed a wave burst associated with the oxygen ion cyclotron waves. This observation shows that during geomagnetic storms, the oxygen ions are very active in the inner magnetosphere. Outside the plasmasphere, LFEW observed the chorus on 3 November 2004. LFEW also observed the plasmaspheric hiss and mid-latitude hiss both in the Southern Hemisphere and Northern Hemisphere on 8 November 2004. The hiss in the Southern Hemisphere may be the reflected waves of the hiss in the Northern Hemisphere.


2020 ◽  
Vol 494 (2) ◽  
pp. 3014-3027
Author(s):  
M Armano ◽  
H Audley ◽  
J Baird ◽  
P Binetruy ◽  
M Born ◽  
...  

ABSTRACT LISA Pathfinder (LPF) has been a space-based mission designed to test new technologies that will be required for a gravitational wave observatory in space. Magnetically driven forces play a key role in the instrument sensitivity in the low-frequency regime (mHz and below), the measurement band of interest for a space-based observatory. The magnetic field can couple to the magnetic susceptibility and remanent magnetic moment from the test masses and disturb them from their geodesic movement. LPF carried on-board a dedicated magnetic measurement subsystem with noise levels of 10 $\rm nT \ Hz^{-1/2}$ from 1 Hz down to 1 mHz. In this paper we report on the magnetic measurements throughout LPF operations. We characterize the magnetic environment within the spacecraft, study the time evolution of the magnetic field and its stability down to 20 μHz, where we measure values around 200 $\rm nT \ Hz^{-1/2}$, and identify two different frequency regimes, one related to the interplanetary magnetic field and the other to the magnetic field originating inside the spacecraft. Finally, we characterize the non-stationary component of the fluctuations of the magnetic field below the mHz and relate them to the dynamics of the solar wind.


Sign in / Sign up

Export Citation Format

Share Document