On the fluid dynamics of evolving stars

The problem addressed is that of following the secular evolution of the velocity field and distribution of matter of a model star endowed with an arbitrary amount of angular momentum. A novel feature of the fluid dynamical formulation is the introduction and systematic use of material functions. These functions both facilitate the treatment of the free boun­dary of the star and enable one to use the circulation about certain contours as a priori constants of the motion. The equations governing the evolution of the material functions are adjoined to the Euler equations of fluid dynamics and are to be solved simultaneously with them. No special symmetry assumptions need to be imposed in formulating the equations. This makes it possible to apply them not only in the case of axisymmetric rotating stars, but also in the case of bar-shaped figures that may evolve toward double stars. The formulation is well adapted to the perturbation analysis needed in investigating bifurcation from families of slowly evolving fluid masses. The classes of model stars covered by the formulation include time dependent barotropic models, but are applicable to a significantly wider class of models as well. Even in the context of this wider, non-barotropic class of models, a restricted version of Kelvin’s circulation theorem holds, and plays a major role in rendering determinate the equations of secular evolution.

Author(s):  
Claudio Miccoli ◽  
Alessandro Turchi ◽  
Pierre Schrooyen ◽  
Domenic D’Ambrosio ◽  
Thierry Magin

AbstractThis work deals with the analysis of the cork P50, an ablative thermal protection material (TPM) used for the heat shield of the qarman Re-entry CubeSat. Developed for the European Space Agency (ESA) at the von Karman Institute (VKI) for Fluid Dynamics, qarman is a scientific demonstrator for Aerothermodynamic Research. The ability to model and predict the atypical behavior of the new cork-based materials is considered a critical research topic. Therefore, this work is motivated by the need to develop a numerical model able to respond to this demand, in preparation to the post-flight analysis of qarman. This study is focused on the main thermal response phenomena of the cork P50: pyrolysis and swelling. Pyrolysis was analyzed by means of the multi-physics Computational Fluid Dynamics (CFD) code argo, developed at Cenaero. Based on a unified flow-material solver, the Volume Averaged Navier–Stokes (VANS) equations were numerically solved to describe the interaction between a multi-species high enthalpy flow and a reactive porous medium, by means of a high-order Discontinuous Galerkin Method (DGM). Specifically, an accurate method to compute the pyrolysis production rate was implemented. The modeling of swelling was the most ambitious task, requiring the development of a physical model accounting for this phenomenon, for the purpose of a future implementation within argo. A 1D model was proposed, mainly based on an a priori assumption on the swelling velocity and the resolution of a nonlinear advection equation, by means of a Finite Difference Method (FDM). Once developed, the model was successfully tested through a matlab code, showing that the approach is promising and thus opening the way to further developments.


2020 ◽  
Vol 499 (3) ◽  
pp. 4097-4113 ◽  
Author(s):  
Yossef Zenati ◽  
Daniel M Siegel ◽  
Brian D Metzger ◽  
Hagai B Perets

ABSTRACT The core collapse of massive, rapidly-rotating stars are thought to be the progenitors of long-duration gamma-ray bursts (GRB) and their associated hyperenergetic supernovae (SNe). At early times after the collapse, relatively low angular momentum material from the infalling stellar envelope will circularize into an accretion disc located just outside the black hole horizon, resulting in high accretion rates necessary to power a GRB jet. Temperatures in the disc mid-plane at these small radii are sufficiently high to dissociate nuclei, while outflows from the disc can be neutron-rich and may synthesize r-process nuclei. However, at later times, and for high progenitor angular momentum, the outer layers of the stellar envelope can circularize at larger radii ≳ 107 cm, where nuclear reactions can take place in the disc mid-plane (e.g. 4He + 16O → 20Ne + γ). Here we explore the effects of nuclear burning on collapsar accretion discs and their outflows by means of hydrodynamical α-viscosity torus simulations coupled to a 19-isotope nuclear reaction network, which are designed to mimic the late infall epochs in collapsar evolution when the viscous time of the torus has become comparable to the envelope fall-back time. Our results address several key questions, such as the conditions for quiescent burning and accretion versus detonation and the generation of 56Ni in disc outflows, which we show could contribute significantly to powering GRB SNe. Being located in the slowest, innermost layers of the ejecta, the latter could provide the radioactive heating source necessary to make the spectral signatures of r-process elements visible in late-time GRB-SNe spectra.


2003 ◽  
Vol 125 (4) ◽  
pp. 723-730
Author(s):  
H. Nilsson ◽  
L. Davidson

This work derives and applies a method for the investigation of numerical accuracy in computational fluid dynamics. The method is used to investigate discretization errors in computations of swirling flow in water turbines. The work focuses on the conservation of a subset of the angular momentum equations that is particularly important to swirling flow in water turbines. The method is based on the fact that the discretized angular momentum equations are not necessarily conserved when the discretized linear momentum equations are solved. However, the method can be used to investigate the effect of discretization on any equation that should be conserved in the correct solution, and the application is not limited to water turbines. Computations made for two Kaplan water turbine runners and a simplified geometry of one of the Kaplan runner ducts are investigated to highlight the general and simple applicability of the method.


2010 ◽  
Vol 6 (S271) ◽  
pp. 119-126 ◽  
Author(s):  
Francoise Combes

AbstractRecent results are reviewed on galaxy dynamics, bar evolution, destruction and re-formation, cold gas accretion, gas radial flows and AGN fueling, minor mergers. Some problems of galaxy evolution are discussed in particular, exchange of angular momentum, radial migration through resonant scattering, and consequences on abundance gradients, the frequency of bulgeless galaxies, and the relative role of secular evolution and hierarchical formation.


Author(s):  
C.J Cotter ◽  
D.D Holm ◽  
P.E Hydon

We construct multisymplectic formulations of fluid dynamics using the inverse of the Lagrangian path map. This inverse map, the ‘back-to-labels’ map, gives the initial Lagrangian label of the fluid particle that currently occupies each Eulerian position. Explicitly enforcing the condition that the fluid particles carry their labels with the flow in Hamilton's principle leads to our multisymplectic formulation. We use the multisymplectic one-form to obtain conservation laws for energy, momentum and an infinite set of conservation laws arising from the particle relabelling symmetry and leading to Kelvin's circulation theorem. We discuss how multisymplectic numerical integrators naturally arise in this approach.


2021 ◽  
Author(s):  
Darren Jia

Diabolo is a popular game in which the object can be spun at up to speeds of 5000 rpm. This high spin velocity gives the diabolo the necessary angular momentum to remain stable. The shape of the diabolo generates an interesting air flow pattern. The viscous air applies a resistive torque on the fast spinning diabolo. Through computational fluid dynamics (CFD) simulations it's shown that the resistive torque has an interesting dependence on the angular speed of the diabolo. Further, the geometric shape of the diabolo affects the dependence of torque on angular speed.


Author(s):  
Sulfickerali Noor Mohamed ◽  
John Chew ◽  
Nick Hills

The cooling air in a rotating machine is subject to windage as it passes over the rotor surface, particularly for cases where nonaxisymmetric features such as boltheads are encountered. The ability to accurately predict windage can help reduce the quantity of cooling air required, resulting in increased efficiency. Previous work has shown that the steady computational fluid dynamics solutions can give reasonable predictions for the effects of bolts on disc moment for a rotor–stator cavity with throughflow but flow velocities and disc temperature are not well predicted. Large fluctuations in velocities have been observed experimentally in some cases. Time-dependent computational fluid dynamics simulations reported here bring to light the unsteady nature of the flow. Unsteady Reynolds-averaged Navier–Stokes calculations for 120° and 360° models of the rotor–stator cavity with 9 and 18 bolts were performed in order to better understand the flow physics. Although the rotor–stator cavity with bolts is geometrically steady in the rotating frame of reference, it was found that the bolts generate unsteadiness which creates time-dependent rotating flow features within the cavity. At low throughflow conditions, the unsteady flow significantly increases the average disc temperature.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1342
Author(s):  
Ofir E. Alon

A solvable model of a periodically driven trapped mixture of Bose–Einstein condensates, consisting of N1 interacting bosons of mass m1 driven by a force of amplitude fL,1 and N2 interacting bosons of mass m2 driven by a force of amplitude fL,2, is presented. The model generalizes the harmonic-interaction model for mixtures to the time-dependent domain. The resulting many-particle ground Floquet wavefunction and quasienergy, as well as the time-dependent densities and reduced density matrices, are prescribed explicitly and analyzed at the many-body and mean-field levels of theory for finite systems and at the limit of an infinite number of particles. We prove that the time-dependent densities per particle are given at the limit of an infinite number of particles by their respective mean-field quantities, and that the time-dependent reduced one-particle and two-particle density matrices per particle of the driven mixture are 100% condensed. Interestingly, the quasienergy per particle does not coincide with the mean-field value at this limit, unless the relative center-of-mass coordinate of the two Bose–Einstein condensates is not activated by the driving forces fL,1 and fL,2. As an application, we investigate the imprinting of angular momentum and its fluctuations when steering a Bose–Einstein condensate by an interacting bosonic impurity and the resulting modes of rotations. Whereas the expectation values per particle of the angular-momentum operator for the many-body and mean-field solutions coincide at the limit of an infinite number of particles, the respective fluctuations can differ substantially. The results are analyzed in terms of the transformation properties of the angular-momentum operator under translations and boosts, and as a function of the interactions between the particles. Implications are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document