Acoustic radiation from rectangular panels coupled in an L shape

Analytic expressions are given for the radiation resistance at high modal numbers, of an L junction of two finite rectangular plates. Initially, plates are taken to perform small-amplitude transverse vibrations with sinusoidal mode shapes. It is shown that the principal contribution to the radiation resistance can be derived from the solution of appropriate large plate problems. Consequently, account may be taken of more realistic modal profiles arising from the exchange of vibrational energy in structural subsystems.

2012 ◽  
Vol 19 (3) ◽  
pp. 349-364 ◽  
Author(s):  
R. Lal ◽  
Yajuvindra Kumar

The free transverse vibrations of thin nonhomogeneous rectangular plates of variable thickness have been studied using boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method. Gram-Schmidt process has been used to generate these orthogonal polynomials in two variables. The thickness variation is bidirectional and is the cartesian product of linear variations along two concurrent edges of the plate. The nonhomogeneity of the plate is assumed to arise due to linear variations in Young's modulus and density of the plate material with the in-plane coordinates. Numerical results have been computed for four different combinations of clamped, simply supported and free edges. Effect of the nonhomogeneity and thickness variation with varying values of aspect ratio on the natural frequencies of vibration is illustrated for the first three modes of vibration. Three dimensional mode shapes for all the four boundary conditions have been presented. A comparison of results with those available in the literature has been made.


Author(s):  
Dumitru I. Caruntu

This paper presents an approach for finding the solution of partial differential equation describing the motion of transverse vibrations of rectangular plates of unidirectional convex parabolic varying thickness. The partial differential equation consists of three operators: fourth-order spatial-dependent, second-order spatial-dependent, and second-order time-dependent. Using the method of multiple scales, the partial differential equation has been reduced to two simpler partial differential equations which can be analytically solved and which represent two levels of approximation. The first partial differential equation was a homogeneous equation and consisted of two operators, the fourth-order spatial-dependent and second-order time-dependent. Using the factorization method, so-called zero-order approximation of the exact solution has been found. The second partial differential equation was an inhomogeneous equation. Its solution, so-called first-order approximation of the exact solution has been found. This way the first-order approximations of the natural frequencies and mode shapes are found. Various boundary conditions can be considered. The influence of Poisson’s ratio on the natural frequencies and mode shapes could be further studied using the approximations reported here. This approach can be extended to nonlinear, and/or forced vibrations.


2016 ◽  
Vol 23 (17) ◽  
pp. 2841-2865 ◽  
Author(s):  
Roshan Lal ◽  
Renu Saini

Analysis and numerical results are presented for free transverse vibrations of isotropic rectangular plates having arbitrarily varying non-homogeneity with the in-plane coordinates along the two concurrent edges on the basis of Kirchhoff plate theory. For the non-homogeneity, a general type of variation for Young’s modulus and density of the plate material has been assumed. Generalized differential quadrature method has been used to obtain the eigenvalue problem for such model of plates for four different combinations of boundary conditions at the edges namely, (i) fully clamped, (ii) two opposite edges are clamped and other two are simply supported, (iii) two opposite edges are clamped and other two are free, and (iv) two opposite edges are simply supported and other two are free. By solving these eigenvalue problems using software MATLAB, the lowest three eigenvalues have been reported as the first three natural frequencies for the first three modes of vibration. The effect of various plate parameters on the vibration characteristics has been analysed. Three dimensional mode shapes have been plotted. A comparison of results with those available in literature has been presented.


Author(s):  
Dumitru I. Caruntu ◽  
Ion Stroe

This paper presents an approach for finding the solution of partial differential equation describing the motion of transverse vibrations of rectangular plates of unidirectional linear varying thickness. The original partial differential equation consists of three operators: fourth-order spatial-dependent, second-order spatial-dependent, and second-order time-dependent. Using the method of multiple scales, the partial differential equation has been reduced to two simpler partial differential equations which can be analytically solved and which represent two levels of approximation. The first partial differential equation was a homogeneous equation and consisted of two operators, the fourth-order spatial-dependent and second-order time-dependent. The solution of this equation was found using the factorization method. This solution was zeroth-order approximation of the exact solution. The second partial differential equation was an inhomogeneous equation. The solution of this equation was also found and led to first-order approximation of the exact solution of the original problem. This way the first-order approximations of the natural frequencies and mode shapes are found. Various boundary conditions can be considered. The influence of Poisson’s ratio on the natural frequencies and mode shapes could be further studied using the approximations reported here. This approach can be extended to nonlinear, and/or forced vibrations.


1989 ◽  
Vol 26 (2) ◽  
pp. 149-154 ◽  
Author(s):  
L. Ercoli ◽  
P.A.A. Laura ◽  
H.C. Sanzi

Author(s):  
Kevin D. Murphy ◽  
Lawrence N. Virgin ◽  
Stephen A. Rizzi

Abstract Experimental results are presented which characterize the dynamic response of homogeneous, fully clamped, rectangular plates to narrow band acoustic excitation and uniform thermal loads. Using time series, pseudo-phase projections, power spectra and auto-correlation functions, small amplitude vibrations are considered about both the pre- and post-critical states. These techniques are then employed to investigate the snap-through response. The results for snap-through suggest that the motion is temporally complex and a Lyapunov exponent calculation confirms that the motion is chaotic. Finally, a snap-through boundary is mapped in the (ω, SPL) parameter space separating the regions of snap-through and no snap-through.


1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.


1998 ◽  
Vol 212 (4) ◽  
pp. 583-598 ◽  
Author(s):  
K. Renji ◽  
P.S. Nair ◽  
S. Narayanan

Author(s):  
Yoshihiro Narita

Abstract The free vibration behavior of rectangular plates provides important technical information in structural design, and the natural frequencies are primarily affected by the boundary conditions as well as aspect and thickness ratios. One of the three classical edge conditions, i.e., free, simple supported and clamped edges, may be used to model the constraint along an edge of the rectangle. Along the entire boundary with four edges, there exist a wide variety of combinations in the edge conditions, each yielding different natural frequencies and mode shapes. For counting the total number of possible combinations, the present paper introduces the Polya counting theory in combinatorial mathematics, and formulas are derived for counting the exact numbers. A modified Ritz method is then developed to calculate natural frequencies of anisotropic rectangular plates under any combination of the three edge conditions and is used to numerically verify the numbers. In numerical experiments, the number of combinations in the free vibration behaviors is determined for some plate models by using the derived formulas, and are corroborated by counting the numbers of different sets of the natural frequencies that are obtained from the Ritz method.


Author(s):  
Zhangming Wu ◽  
Xianghong Ma

The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate–fluid interaction problem is developed on the basis of linearized Navier–Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document