Elastic inclusions and inhomogeneities in transversely isotropic solids

A method that introduces a new stress vector function ( the hexagonal stress vector ) is applied to obtain, in closed form, the elastic fields due to an inclusion in transversely isotropic solids. The solution is an extension of Eshelby’s solution for an ellipsoidal inclusion in isotropic solids. The Green’s functions for double forces and double forces with moment are derived and these are then used to solve the inclusion problem. The elastic field inside the inclusion is expressed in terms of the newtonian and biharmonic potential functions, which are similar to those needed for the solution in isotropic solids. Two more harmonic potential functions are introduced to express the solution outside the inclusion. The constrained strain inside the inclusion is uniform and the relation between the constrained strain and the misfit strain has the same characteristics as those of the Eshelby tensor for isotropic solids, namely, the coefficients coupling an extension to a shear or one shear to another are zero. The explicit closed form expression of this tensor is given. The inhomogeneity problem is then solved by using Eshelby’s equivalent inclusion method. The solution for the thermoelastic displacements due to thermal inhomogeneities is also presented.

2006 ◽  
Vol 312 ◽  
pp. 41-46 ◽  
Author(s):  
Bao Lin Wang ◽  
Yiu Wing Mai

This paper solves the penny-shaped crack configuration in transversely isotropic solids with coupled magneto-electro-elastic properties. The crack plane is coincident with the plane of symmetry such that the resulting elastic, electric and magnetic fields are axially symmetric. The mechanical, electrical and magnetical loads are considered separately. Closed-form expressions for the stresses, electric displacements, and magnetic inductions near the crack frontier are given.


2011 ◽  
Vol 78 (3) ◽  
Author(s):  
Xiaoqing Jin ◽  
Leon M. Keer ◽  
Qian Wang

From the analytical formulation developed by Ju and Sun [1999, “A Novel Formulation for the Exterior-Point Eshelby’s Tensor of an Ellipsoidal Inclusion,” ASME Trans. J. Appl. Mech., 66, pp. 570–574], it is seen that the exterior point Eshelby tensor for an ellipsoid inclusion possesses a minor symmetry. The solution to an elliptic cylindrical inclusion may be obtained as a special case of Ju and Sun’s solution. It is noted that the closed-form expression for the exterior-point Eshelby tensor by Kim and Lee [2010, “Closed Form Solution of the Exterior-Point Eshelby Tensor for an Elliptic Cylindrical Inclusion,” ASME Trans. J. Appl. Mech., 77, p. 024503] violates the minor symmetry. Due to the importance of the solution in micromechanics-based analysis and plane-elasticity-related problems, in this work, the explicit analytical solution is rederived. Furthermore, the exterior-point Eshelby tensor is used to derive the explicit closed-form solution for the elastic field outside the inclusion, as well as to quantify the elastic field discontinuity across the interface. A benchmark problem is used to demonstrate a valuable application of the present solution in implementing the equivalent inclusion method.


1997 ◽  
Vol 64 (3) ◽  
pp. 457-465 ◽  
Author(s):  
M. T. Hanson ◽  
I. W. Puja

This analysis presents the elastic field in a half-space caused by an ellipsoidal variation of normal traction on the surface. Coulomb friction is assumed and thus the shear traction on the surface is taken as a friction coefficient multiplied by the normal pressure. Hence the shear traction is also of an ellipsoidal variation. The half-space is transversely isotropic, where the planes of isotropy are parallel to the surface. A potential function method is used where the elastic field is written in three harmonic functions. The known point force potential functions are utilized to find the solution for ellipsoidal loading by quadrature. The integrals for the derivatives of the potential functions resulting from ellipsoidal loading are evaluated in terms of elementary functions and incomplete elliptic integrals of the first and second kinds. The elastic field is given in closed-form expressions for both normal and shear loading.


2006 ◽  
Vol 306-308 ◽  
pp. 775-780
Author(s):  
Tung Yang Chen

Effective thermal conductivities of composites consisting of curvilinearly anisotropic inclusions with Kapitza thermal contact resistance between the constituents are considered. We show that the effect of these curvilinearly anisotropic inclusions can be exactly simulated by certain equivalent isotropic or transversely isotropic inclusions. Three different micromechanical models are employed to estimate the effective thermal conductivity of the composite. Interestingly, all these methods result in the same simple, closed-form expression.


1992 ◽  
Vol 27 (1) ◽  
pp. 43-44 ◽  
Author(s):  
P S Theocaris ◽  
T P Philippidis

The basic principle of positive strain energy density of an anisotropic linear or non-linear elastic solid imposes bounds on the values of the stiffness and compliance tensor components. Although rational mathematical structuring of valid intervals for these components is possible and relatively simple, there are mathematical procedures less strictly followed by previous authors, which led to an overestimation of the bounds and misinterpretation of experimental results.


Sign in / Sign up

Export Citation Format

Share Document