Feedback control to delay or advance linear loss of stability in planar Poiseuille flow

By using linear stability theory, we demonstrate theoretically that the critical Reynolds number for the loss of stability of planar Poiseuille flow can be significantly increased or decreased through the use of feedback control strategies which enhance or suppress disturbance dissipating mechanisms in the flow. The controller studied here consists of closely packed, wall mounted, shear stress sensors and thermoelectric actuators. The sensors detect flow instabilities and direct the actuators to alter the fluid’s viscosity by modulating the adjacent wall temperature in such a way as to suppress or enhance flow instabilities. Results are presented for water and air flows.

2002 ◽  
Vol 124 (4) ◽  
pp. 617-624
Author(s):  
Herve´ Pabiou ◽  
Jun Liu ◽  
Christine Be´nard

Active control of a planar Poiseuille flow can be performed by increasing or decreasing the wall temperature in proportion to the observed wall shear stress perturbation. In continuation with the work of H. H. Hu and H. H. Bau (1994, Feedback Control to Delay or Advance Linear Loss of Stability in Planar Poiseuille Flow, Proc. R. Soc. London A, 447, pp. 299–312), a linear stability analysis of such a feedback control is developed in this paper. The Poiseuille flow control problem is reduced to a modified Orr-Sommerfeld equation coupled with a heat equation. By solving numerically the coupled equations with a finite element method, many numerical results about the stability of the flow control are obtained. We focus our attention on the interpretation of the numerical results. In particular, the role of two essential parameters—the Prandtl number Pr and the control gain K—is investigated in detail. When Pr>1.31, stabilizing K is negative; while, when Pr<1.31, stabilizing K is positive. And when Pr=1.31, the flow cannot be stabilized by a real K. A comparison between symmetric two-wall control and non-symmetric one-wall control is also made.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 66-72
Author(s):  
Tao Pan ◽  
Daniel Hyman ◽  
Mehran Mehregany ◽  
Eli Reshotko ◽  
Steven Garverick

Author(s):  
Young Joo Shin ◽  
Peter H. Meckl

Benchmark problems have been used to evaluate the performance of a variety of robust control design methodologies by many control engineers over the past 2 decades. A benchmark is a simple but meaningful problem to highlight the advantages and disadvantages of different control strategies. This paper verifies the performance of a new control strategy, which is called combined feedforward and feedback control with shaped input (CFFS), through a benchmark problem applied to a two-mass-spring system. CFFS, which consists of feedback and feedforward controllers and shaped input, can achieve high performance with a simple controller design. This control strategy has several unique characteristics. First, the shaped input is designed to extract energy from the flexible modes, which means that a simpler feedback control design based on a rigid-body model can be used. In addition, only a single frequency must be attenuated to reduce residual vibration of both masses. Second, only the dynamics between control force and the first mass need to be considered in designing both feedback and feedforward controllers. The proposed control strategy is applied to a benchmark problem and its performance is compared with that obtained using two alternative control strategies.


1995 ◽  
Vol 117 (2) ◽  
pp. 329-333 ◽  
Author(s):  
J. Tang ◽  
H. H. Bau

Using linear stability theory and numerical simulations, we demonstrate that the critical Rayleigh number for bifurcation from the no-motion (conduction) state to the motion state in the Rayleigh–Be´nard problem of an infinite fluid layer heated from below with Joule heating and cooled from above can be significantly increased through the use of feedback control strategies effecting small perturbations in the boundary data. The bottom of the layer is heated by a network of heaters whose power supply is modulated in proportion to the deviations of the temperatures at various locations in the fluid from the conductive, no-motion temperatures. Similar control strategies can also be used to induce complicated, time-dependent flows at relatively low Rayleigh numbers.


2020 ◽  
Vol 17 (5) ◽  
pp. 172988142094065
Author(s):  
Jiajin Wang ◽  
Jiaji Zhang ◽  
Guokun Zuo ◽  
Changcheng Shi ◽  
Shuai Guo

Based on evidence from the previous research in rehabilitation robot control strategies, we found that the common feature of the effective control strategies to promote subjects’ engagement is creating a reward–punishment feedback mechanism. This article proposes a reward–punishment feedback control strategy based on energy information. Firstly, an engagement estimated approach based on energy information is developed to evaluate subjects’ performance. Secondly, the estimated result forms a reward–punishment term, which is introduced into a standard model-based adaptive controller. This modified adaptive controller is capable of giving the reward–punishment feedback to subjects according to their engagement. Finally, several experiments are implemented using a wrist rehabilitation robot to evaluate the proposed control strategy with 10 healthy subjects who have not cardiovascular and cerebrovascular diseases. The results of these experiments show that the mean coefficient of determination ( R 2) of the data obtained by the proposed approach and the classical approach is 0.7988, which illustrate the reliability of the engagement estimated approach based on energy information. And the results also demonstrate that the proposed controller has great potential to promote patients’ engagement for wrist rehabilitation.


2020 ◽  
Vol 12 (3) ◽  
pp. 168781402091296 ◽  
Author(s):  
Yuan-yuan Ren ◽  
Jie Wang ◽  
Xue-lian Zheng ◽  
Qi-chao Zhao ◽  
Jia-lei Ma ◽  
...  

Performance evaluation is a necessary stage in development of tracking control strategy of autonomous vehicle system, which determines the scope of application and promotes further improvement. At present, most of the tracking control strategies include performance evaluation. However, performance evaluation criteria differ from work to work, lacking comprehensive evaluation system. This article proposes a multidimensional integrated tracking control evaluation system based on subjective and objective weighting, taking into account the tracking accuracy, driving stability, and ride comfort. Through the co-simulation of CarSim and Simulink, qualitative analysis and quantitative analysis based on multidimensional evaluation system of five coupled longitudinal and lateral control strategies (lateral: pure pursuit feedforward control, dynamic-model-based optimal curvature control (dynamic feedforward control), Stanley feedback control, kinematics feedback control, and dynamic feedback control; longitudinal: the incremental proportion–integration–differentiation control) under typical operating conditions are carried out to analyze the operating range and robustness of each tracking control strategy. The results show that the Stanley tracking control strategy and the dynamic feedback tracking control strategy have a wide range of applications and robustness. The consistency of qualitative analysis results and the quantitative analysis results verify the validity and feasibility of the evaluation system.


2017 ◽  
Vol 9 (1) ◽  
pp. 39 ◽  
Author(s):  
Maysoon M. Aziz ◽  
Saad Fawzi AL-Azzawi

This paper extends and improves the feedback control strategies. In detailed, the ordinary feedback, dislocated feedback, speed feedback and enhancing feedback control for a several dynamical systems are discussed here. It is noticed that there some problems by these strategies. For this reason, this Letter proposes a novel approach for treating these problems. The results obtained in this paper show that the strategies with positive feedback coefficients can be controlled in two cases and failed in another two cases. Theoretical and numerical simulations are given to illustrate and verify the results.


Sign in / Sign up

Export Citation Format

Share Document