scholarly journals Percolation–like scaling exponents for minimal paths and trees in the stochastic mean field model

Author(s):  
David J. Aldous

In the mean field (or random link) model there are n points and inter-point distances are independent random variables. For 0 < ℓ < ∞ and in the n → ∞ limit, let δ ( ℓ ) = 1/ n times the maximum number of steps in a path whose average step-length is ≤ ℓ . The function δ ( ℓ ) is analogous to the percolation function in percolation theory: there is a critical value ℓ * = e −1 at which δ (·) becomes non-zero, and (presumably) a scaling exponent β in the sense δ ( ℓ ) ≈ ( ℓ − ℓ * ) β . Recently developed probabilistic methodology (in some sense a rephrasing of the cavity method developed in the 1980s by Mézard and Parisi) provides a simple, albeit non-rigorous, way of writing down such functions in terms of solutions of fixed-point equations for probability distributions. Solving numerically gives convincing evidence that β = 3. A parallel study with trees and connected edge-sets in place of paths gives scaling exponent 2, while the analogue for classical percolation has scaling exponent 1. The new exponents coincide with those recently found in a different context (comparing optimal and near-optimal solutions of the mean-field travelling salesman problem (TSP) and the minimum spanning tree (MST) problem), and reinforce the suggestion that scaling exponents determine universality classes for optimization problems on random points.

2019 ◽  
Vol 61 (2) ◽  
pp. 339
Author(s):  
H. Yurtseven ◽  
S.B. Isik ◽  
E. Kilit Dogan

AbstractThe T – P phase diagrams of the halogenomethane compounds (CCl_4 – _ n Br_ n , n = 0, 1, 2, 4) are calculated using a mean field model. By expanding the free energy in terms of the order parameters for the transitions of the liquid (L), rhombohedral (R), face-centered cubic (FCC) and monoclinic (M) phases in those compounds, the phase line equations are derived and they are fitted to the experimental data from the literature. This method of calculating the T – P phase diagram is satisfactory to explain the T – P measurements for the halogenomethane compounds and it can also be applied to two-component systems.


2002 ◽  
Vol 749 ◽  
Author(s):  
Joshua M. Pomeroy ◽  
Joel D. Brock

ABSTRACTWe report fundamental changes in island nucleation dynamics as the kinetic energy of the constituent particles used for film grown is increased. A hyperthermal energy ion beam-line with precise control over ion kinetic energy was used to grow copper islands on a Cu(100) substrate. Dramatic increases in island densities were observed with increasing kinetic energy from thermal energies to 150 eV. We find that sputter erosion and the formation of adatom-vacancy pairs contribute to this increase. In addition, variations in flux and temperature suggest that the mean-field scaling exponent is sensitive to atomistic mechanisms activated by the ion beam.


1992 ◽  
Vol 45 (11) ◽  
pp. 1899 ◽  
Author(s):  
PA Reynolds ◽  
CD Delfs ◽  
BN Figgis ◽  
B Moubaraki ◽  
KS Murray

The magnetic susceptibilities along and perpendicular to the c axis (hexagonal setting) between 2.0 and 300 K at a magnetic field of 1.00 T, and the magnetizations at field strengths up to 5.00 T, are presented for single crystals of [Co(NH3)5(OH2)] [Cr(CN)6]. The results are interpreted in terms of zero-field splitting (2D) of the ground 4A2g term by spin-orbit coupling and of magnetic exchange interaction between the chromium atoms. The magnetic exchange is modelled as one of Ising or mean-field in type. The exchange is found to be quite small: J = -0.18(6) cm-1 if the Ising model is employed, and -0.03(1) cm-1 for the mean-field model. The model adopted for the exchange has a strong influence on the value of the parameter D obtained. When the Ising model is used D is deduced to be -0.28(9) cm-l; when the mean-field model is used D is -0.14(4) cm-l. The g-values deduced are in agreement with those from e.s.r. measurements at higher temperatures and do not depend on the exchange model. In any case, D is found to be sufficiently large that it must be considered in a polarized neutron diffraction experiment on the compound.


1999 ◽  
Vol 542 (1-2) ◽  
pp. 413-424 ◽  
Author(s):  
P. Bialas ◽  
Z. Burda ◽  
D. Johnston

1998 ◽  
Vol 12 (08) ◽  
pp. 271-279 ◽  
Author(s):  
H. Yurtseven ◽  
S. Salihoğlu

In this study we obtain the P–T phase diagram for the ice VI–VII–VIII phase transitions by means of the mean field model developed here. We have fitted the experimentally measured P–T data to our phase line equations. Our calculated phase diagram describes adequately the observed behavior of the ice VI–VII–VIII phase transitions.


2006 ◽  
Vol 17 (11) ◽  
pp. 1629-1645 ◽  
Author(s):  
JANUSZ SZWABIǸSKI ◽  
ANDRZEJ PȨKALSKI ◽  
KAMIL TROJAN

A model of dynamics of three interacting species is presented. Two of the species are prey and one is predator, which feeds on both prey, however with some preference to one type. Prey compete for space (breeding) although they always have access to food. Predators in order to survive and reproduce must catch prey, otherwise they die of hunger. The dynamics of the model is found via differential equations in the mean-field like approach and through computer simulations for agent-based method. We show that the coexistence of the three species is possible in the mean-field model, provided the preference of the predators is small, whereas from simulation it follows that the stochastic fluctuations drive, generally, one of the prey populations into extinction. We have found a different type of behavior for small and large systems and a rather unexpected dependence of the coexistence chance of the preference parameter in bigger lattices.


2018 ◽  
Vol 28 (06) ◽  
pp. 1037-1066 ◽  
Author(s):  
José A. Carrillo ◽  
Young-Pil Choi ◽  
Claudia Totzeck ◽  
Oliver Tse

In this paper, we provide an analytical framework for investigating the efficiency of a consensus-based model for tackling global optimization problems. This work justifies the optimization algorithm in the mean-field sense showing the convergence to the global minimizer for a large class of functions. Theoretical results on consensus estimates are then illustrated by numerical simulations where variants of the method including nonlinear diffusion are introduced.


Sign in / Sign up

Export Citation Format

Share Document