An analytical model for dispersion of pollutants from a continuous source in the atmospheric boundary layer

Author(s):  
Pramod Kumar ◽  
Maithili Sharan

For the dispersion of a pollutant released from a continuous source in the atmospheric boundary layer (ABL), a generalized analytical model describing the crosswind-integrated concentrations is presented. An analytical scheme is described to solve the resulting two-dimensional steady-state advection–diffusion equation for horizontal wind speed as a generalized function of vertical height above the ground and eddy diffusivity as a function of both downwind distance from the source and vertical height. Special cases of this model are deduced and an extensive analysis is carried out to compare the model with the known analytical models by taking the particular forms of wind speed and vertical eddy diffusivity. The proposed model is evaluated with the observations obtained from Copenhagen diffusion experiments in unstable conditions and Hanford and Prairie Grass experiments in stable conditions. In evaluation of the model, a recently proposed formulation for the wind speed in the entire ABL is used. It is concluded that the present model is performing well with the observations and can be used to predict the short-range dispersion from a continuous release. Further, it is shown that the accurate parameterizations of wind speed and eddy diffusivity provide a significant improvement in the agreement between computed and observed concentrations.

2021 ◽  
Vol 14 (5) ◽  
pp. 3795-3814
Author(s):  
Tamino Wetz ◽  
Norman Wildmann ◽  
Frank Beyrich

Abstract. In this study, a fleet of quadrotor unmanned aerial vehicles (UAVs) is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to obtain horizontal wind speed and direction is designed for hovering flight phases and is based on the principle of aerodynamic drag and the related quadrotor dynamics. During the FESST@MOL campaign at the boundary layer field site (Grenzschichtmessfeld, GM) Falkenberg of the Lindenberg Meteorological Observatory – Richard Assmann Observatory (MOL-RAO), 76 calibration and validation flights were performed. The 99 m tower equipped with cup and sonic anemometers at the site is used as the reference for the calibration of the wind measurements. The validation with an independent dataset against the tower anemometers reveals that an average accuracy of σrms<0.3 m s−1 for the wind speed and σrms,ψ<8∘ for the wind direction was achieved. Furthermore, we compare the spatial distribution of wind measurements with the fleet of quadrotors to the tower vertical profiles and Doppler wind lidar scans. We show that the observed shear in the vertical profiles matches well with the tower and the fluctuations on short timescales agree between the systems. Flow structures that appear in the time series of a line-of-sight measurement and a two-dimensional vertical scan of the lidar can be observed with the fleet of quadrotors and are even sampled with a higher resolution than the deployed lidar can provide.


MAUSAM ◽  
2021 ◽  
Vol 64 (4) ◽  
pp. 655-662
Author(s):  
M.ABDEL WAHAB ◽  
KHALED SMESSA ◽  
M. EMBABY ◽  
SAWSAN EMELSAID

bl 'kks/k i= esa fu"izHkkoh vkSj vfLFkj fLFkfr;ksa esa ØkWliou lekdfyr lkanz.k ysus ds fy, nks fn’kkvksa esa vfHkogu folj.k lehdj.k ¼ADE½ dks gy fd;k x;k gSA ykIykl :ikarj.k rduhd dk mi;ksx rFkk m/okZ/kj Å¡pkbZ ij vk/kkfjr iou xfr vkSj Hkaoj folj.k’khyrk dh leh{kk djrs gq, ;g gy fudkyk x;k gSA blds lkFk gh Hkw&Lrj  vkSj vf/kdre lkanz.kksa dk Hkh vkdyu fd;k x;k gSA geus bl ekWMy esa iwokZuqekfur vkSj izsf{kr lkanz.k vk¡dM+ksa ds e/; rqyuk djus ds fy, dksiugsxu ¼MsuekdZ½ ls fy, x, vkuqHkfod vk¡dM+ksa dk mi;ksx fd;k gSA  The advection diffusion equation (ADE) is solved in two directions to obtain the crosswind integrated concentration in neutral and unstable conditions. The solution is solved using Laplace transformation technique and considering the wind speed and eddy diffusivity depending on the vertical height. Also the ground level and maximum concentrations are estimated. We use in this model empirical data from Copenhagen (Denmark) to compare between predicted and observed concentration data.


2021 ◽  
Author(s):  
Tamino Wetz ◽  
Norman Wildmann ◽  
Frank Beyrich

&lt;p&gt;A swarm of quadrotor UAVs is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is, that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to obtain horizontal wind speed and direction is designed for hovering flight phases and is based on the principle of aerodynamic drag and the related quadrotor dynamics using only on-board sensors.&lt;/p&gt;&lt;p&gt;During the FESST@MOL campaign at the Boundary Layer Field Site (Grenzschichtmessfeld, GM) Falkenberg of the Lindenberg Meteorological Observatory - Richard-A&amp;#223;mann-Observatory (MOL-RAO), 76 calibration and validation flights were performed. The 99 m tower equipped with cup and sonic anemometers at the site is used as the reference for the calibration of the wind measurements. The validation with an independent dataset against the tower anemometers reveals that an average accuracy of &amp;#963;&lt;sub&gt;rms &lt;/sub&gt;&lt; 0.3 m s&lt;sup&gt;-1&lt;/sup&gt; for the wind speed and &amp;#963;&lt;sub&gt;rms&lt;/sub&gt;,&lt;sub&gt;&amp;#936;&lt;/sub&gt;&lt;sub&gt;&lt;/sub&gt;&lt; 8&amp;#176; for the wind direction was achieved.&lt;/p&gt;&lt;p&gt;Furthermore, we compare the spatial distribution of wind measurements with the swarm to the tower vertical profiles and Doppler wind lidar scans. We show that the observed shear in the vertical profiles matches well with the tower and the fluctuations on short time scales agree between the systems. Flow structures that appear in the time series of a line-of-sight measurement and a two-dimensional vertical scan of the lidar can be observed with the swarm and are even sampled with a higher resolution than the deployed lidar can provide.&lt;/p&gt;&lt;p&gt;In addition to the intercomparison of the mean wind velocity measurements, turbulence data of the UAV-swarm measurements are analyzed and a comparison to sonic anemometer measurements is provided.&lt;/p&gt;


2007 ◽  
Vol 7 (6) ◽  
pp. 15565-15580 ◽  
Author(s):  
L. Zhang ◽  
M. Chen ◽  
L. Li

Abstract. An 1.5-level-closure and 3-D non-stationary atmospheric boundary layer (ABL) model and a radiation transfer model with the output of Weather Research and Forecast (WRF) Model and lidar AML-1 are employed to simulate the dust aerosol radiative effect and its influence on ABL in Beijing for the period of 23–26 January 2002 when a dust storm occurred. The simulation shows that daytime dust aerosol radiative effect heats up the ABL at the mean rate of about 0.68 K/h. The horizontal wind speed from ground to 900 m layer is also overall increased, and the value changes about 0.01 m/s at 14:00 LT near the ground. At night, the dust aerosol radiative effect cools the ABL at the mean rate of −0.21 K/h and the wind speed lowers down at about −0.19 m/s at 02:00 LT near the ground.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2071
Author(s):  
Brian Fiedler

The simplest model for an atmospheric boundary layer assumes a uniform steady wind over a certain depth, of order 1 km, with the forces of friction, pressure gradient and Coriolis in balance. A linear model is here employed for the adjustment of wind to this equilibrium, as the wake of a very wide wind farm. A length scale is predicted for the exponential adjustment to equilibrium. Calculation of this length scale is aided by knowledge of the angle for which the wind would normally cross the isobars in environmental conditions in the wake.


Sign in / Sign up

Export Citation Format

Share Document