Distributed wind measurements with multiple quadrotor UAVs in the atmospheric boundary layer

Author(s):  
Tamino Wetz ◽  
Norman Wildmann ◽  
Frank Beyrich

<p>A swarm of quadrotor UAVs is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is, that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to obtain horizontal wind speed and direction is designed for hovering flight phases and is based on the principle of aerodynamic drag and the related quadrotor dynamics using only on-board sensors.</p><p>During the FESST@MOL campaign at the Boundary Layer Field Site (Grenzschichtmessfeld, GM) Falkenberg of the Lindenberg Meteorological Observatory - Richard-Aßmann-Observatory (MOL-RAO), 76 calibration and validation flights were performed. The 99 m tower equipped with cup and sonic anemometers at the site is used as the reference for the calibration of the wind measurements. The validation with an independent dataset against the tower anemometers reveals that an average accuracy of σ<sub>rms </sub>< 0.3 m s<sup>-1</sup> for the wind speed and σ<sub>rms</sub>,<sub>Ψ</sub><sub></sub>< 8° for the wind direction was achieved.</p><p>Furthermore, we compare the spatial distribution of wind measurements with the swarm to the tower vertical profiles and Doppler wind lidar scans. We show that the observed shear in the vertical profiles matches well with the tower and the fluctuations on short time scales agree between the systems. Flow structures that appear in the time series of a line-of-sight measurement and a two-dimensional vertical scan of the lidar can be observed with the swarm and are even sampled with a higher resolution than the deployed lidar can provide.</p><p>In addition to the intercomparison of the mean wind velocity measurements, turbulence data of the UAV-swarm measurements are analyzed and a comparison to sonic anemometer measurements is provided.</p>

2021 ◽  
Vol 14 (5) ◽  
pp. 3795-3814
Author(s):  
Tamino Wetz ◽  
Norman Wildmann ◽  
Frank Beyrich

Abstract. In this study, a fleet of quadrotor unmanned aerial vehicles (UAVs) is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to obtain horizontal wind speed and direction is designed for hovering flight phases and is based on the principle of aerodynamic drag and the related quadrotor dynamics. During the FESST@MOL campaign at the boundary layer field site (Grenzschichtmessfeld, GM) Falkenberg of the Lindenberg Meteorological Observatory – Richard Assmann Observatory (MOL-RAO), 76 calibration and validation flights were performed. The 99 m tower equipped with cup and sonic anemometers at the site is used as the reference for the calibration of the wind measurements. The validation with an independent dataset against the tower anemometers reveals that an average accuracy of σrms<0.3 m s−1 for the wind speed and σrms,ψ<8∘ for the wind direction was achieved. Furthermore, we compare the spatial distribution of wind measurements with the fleet of quadrotors to the tower vertical profiles and Doppler wind lidar scans. We show that the observed shear in the vertical profiles matches well with the tower and the fluctuations on short timescales agree between the systems. Flow structures that appear in the time series of a line-of-sight measurement and a two-dimensional vertical scan of the lidar can be observed with the fleet of quadrotors and are even sampled with a higher resolution than the deployed lidar can provide.


2021 ◽  
Author(s):  
Tamino Wetz ◽  
Norman Wildmann ◽  
Frank Beyrich

Abstract. In this study, a swarm of quadrotor UAVs is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is, that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to obtain horizontal wind speed and direction is designed for hovering flight phases and is based on the principle of aerodynamic drag and the related quadrotor dynamics. During the FESST@MOL campaign at the Boundary Layer Field Site (Grenzschichtmessfeld, GM) Falkenberg of the Lindenberg Meteorological Observatory - Richard-Aßmann-Observatory (MOL-RAO), 76 calibration and validation flights were performed. The 99 m tower equipped with cup and sonic anemometers at the site is used as the reference for the calibration of the wind measurements. The validation with an independent dataset against the tower anemometers reveals that an average accuracy, regarding the root mean square deviation, of σrms


Author(s):  
Pramod Kumar ◽  
Maithili Sharan

For the dispersion of a pollutant released from a continuous source in the atmospheric boundary layer (ABL), a generalized analytical model describing the crosswind-integrated concentrations is presented. An analytical scheme is described to solve the resulting two-dimensional steady-state advection–diffusion equation for horizontal wind speed as a generalized function of vertical height above the ground and eddy diffusivity as a function of both downwind distance from the source and vertical height. Special cases of this model are deduced and an extensive analysis is carried out to compare the model with the known analytical models by taking the particular forms of wind speed and vertical eddy diffusivity. The proposed model is evaluated with the observations obtained from Copenhagen diffusion experiments in unstable conditions and Hanford and Prairie Grass experiments in stable conditions. In evaluation of the model, a recently proposed formulation for the wind speed in the entire ABL is used. It is concluded that the present model is performing well with the observations and can be used to predict the short-range dispersion from a continuous release. Further, it is shown that the accurate parameterizations of wind speed and eddy diffusivity provide a significant improvement in the agreement between computed and observed concentrations.


2007 ◽  
Vol 7 (6) ◽  
pp. 15565-15580 ◽  
Author(s):  
L. Zhang ◽  
M. Chen ◽  
L. Li

Abstract. An 1.5-level-closure and 3-D non-stationary atmospheric boundary layer (ABL) model and a radiation transfer model with the output of Weather Research and Forecast (WRF) Model and lidar AML-1 are employed to simulate the dust aerosol radiative effect and its influence on ABL in Beijing for the period of 23–26 January 2002 when a dust storm occurred. The simulation shows that daytime dust aerosol radiative effect heats up the ABL at the mean rate of about 0.68 K/h. The horizontal wind speed from ground to 900 m layer is also overall increased, and the value changes about 0.01 m/s at 14:00 LT near the ground. At night, the dust aerosol radiative effect cools the ABL at the mean rate of −0.21 K/h and the wind speed lowers down at about −0.19 m/s at 02:00 LT near the ground.


2021 ◽  
Author(s):  
Kevin Wolz ◽  
Frank Beyrich ◽  
Julian Steinheuer ◽  
Carola Detring ◽  
Ronny Leinweber ◽  
...  

&lt;p&gt;The technological development of ground-based active remote sensing instruments has reached a point where they have the possibility to drastically increase the temporal and spatial data density compared to conventional instruments, which would allow for a better process understanding and is expected to enhance the forecasting skills of numerical weather prediction systems and reduce its uncertainties. To test the measurement uncertainty and feasibility of Doppler Lidar systems we participated in the FESST@MOL 2020 field campaign, organized by the German Meteorological Service (DWD) in Lindenberg, Germany. During this campaign, eight Doppler Lidars were operated at the boundary layer field site (GM) Falkenberg. We evaluated different scanning strategies for the determination of the wind profile in the Atmospheric Boundary Layer (ABL) using multiple different triple Lidar virtual tower (VT) scan patterns including range height indicator (RHI) and step/stare scan modes. We compared these Lidar-based wind measurements with the data from a sonic anemometer on a 99 m tall instrumented tower also located in Falkenberg over a period of four months. The lidar and the sonic anemometer data were processed to 10- and 30- minute averages and compared to each other. The VT measurements underestimated the mean horizontal wind compared to the sonic anemometer by around 0.2 m s&lt;sup&gt;&amp;#8209;1&lt;/sup&gt;. Besides that, we compared the VT data with those from a single fourth nearby Doppler Lidar which was running in a velocity-azimuth display (VAD) mode. The calculated mean horizontal wind values between the two different modes showed a good comparability but differed stronger with increasing height.&lt;/p&gt;


2011 ◽  
Vol 6 (1) ◽  
pp. 251-259 ◽  
Author(s):  
D. Barantiev ◽  
M. Novitsky ◽  
E. Batchvarova

Abstract. Continuous wind profile and turbulence measurements were initiated in July 2008 at the coastal meteorological observatory of Ahtopol on the Black Sea (south-east Bulgaria) under a Bulgarian-Russian collaborative program. These observations are the start of high resolution atmospheric boundary layer vertical structure climatology at the Bulgarian Black Sea coast using remote sensing technology and turbulence measurements. The potential of the measurement program with respect to this goal is illustrated with examples of sea breeze formation and characteristics during the summer of 2008. The analysis revealed three distinct types of weather conditions: no breeze, breeze with sharp frontal passage and gradually developing breeze. During the sea breeze days, the average wind speed near the ground (from sonic anemometer at 4.5 m and first layer of sodar at 30–40 m) did not exceed 3–4 m s−1. The onset of breeze circulation was detected based on surface layer measurements of air temperature (platinum sensor and acoustic), wind speed and direction, and turbulence parameters. The sodar measurements revealed the vertical structure of the wind field.


2021 ◽  
Author(s):  
Steven Knoop ◽  
Fred Bosveld ◽  
Marijn de Haij ◽  
Arnoud Apituley

&lt;p&gt;Atmospheric motion and turbulence are essential parameters for weather and topics related to air quality. Therefore, wind profile measurements play an important role in atmospheric research and meteorology. One source of wind profile data are Doppler wind lidars, which are laser-based remote sensing instruments that measure wind speed and wind direction up to a few hundred meters or even a few kilometers. Commercial wind lidars use the laser wavelength of 1.5 &amp;#181;m and therefore backscatter is mainly from aerosols while clear air backscatter is minimal, limiting the range to the boundary layer typically.&lt;/p&gt;&lt;p&gt;We have carried out a two-year intercomparison of the ZephIR 300M (ZX Lidars) short-range wind lidar and tall mast wind measurements at Cabauw [1]. We have focused on the (height-dependent) data availability of the wind lidar under various meteorological conditions and the data quality through a comparison with in situ wind measurements at several levels in the 213m tall meteorological mast. We have found an overall availability of quality-controlled wind lidar data of 97% to 98 %, where the missing part is mainly due to precipitation events exceeding 1 mm/h or fog or low clouds below 100 m. The mean bias in the horizontal wind speed is within 0.1 m/s with a high correlation between the mast and wind lidar measurements, although under some specific conditions (very high wind speed, fog or low clouds) larger deviations are observed. This instrument is being deployed within North Sea wind farms.&lt;/p&gt;&lt;p&gt;Recently, a scanning long-range wind lidar Windcube 200S (Leosphere/Vaisala) has been installed at Cabauw, as part of the Ruisdael Observatory program [2]. The scanning Doppler wind lidars will provide detailed measurements of the wind field, aerosols and clouds around the Cabauw site, in coordination with other instruments, such as the cloud radar.&lt;/p&gt;&lt;p&gt;[1] Knoop, S., Bosveld, F. C., de Haij, M. J., and Apituley, A.: A 2-year intercomparison of continuous-wave focusing wind lidar and tall mast wind measurements at Cabauw, Atmos. Meas. Tech., 14, 2219&amp;#8211;2235, 2021&lt;/p&gt;&lt;p&gt;[2] https://ruisdael-observatory.nl/&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document