Minimum-drag shapes in magnetohydrodynamics

Author(s):  
Michael Zabarankin

A necessary optimality condition for the minimum-drag shape for a non-magnetic solid body immersed in the uniform flow of an electrically conducting viscous incompressible fluid under the presence of a magnetic field is obtained. It is assumed that the flow and magnetic field are uniform and parallel at infinity, and that the body and fluid have the same magnetic permeability. The condition is derived based on the linearized magnetohydrodynamic (MHD) equations subject to a constraint on the body’s volume, and generalizes the existing optimality conditions for the minimum-drag shapes for the body in the Stokes and Oseen flows of a non-conducting fluid. It is shown that for any Hartmann number M , Reynolds number Re and magnetic Reynolds number Re m , the minimum-drag shapes are fore-and-aft symmetric and have conic vertices with an angle of 2 π /3. The minimum-drag shapes are represented in a function-series form, and the series coefficients are found iteratively with the derived optimality condition. At each iteration, the MHD problem is solved via the boundary integral equations obtained based on the Cauchy integral formula for generalized analytic functions. With respect to the equal-volume sphere, drag reduction as a function of the Cowling number S= M 2 /( Re m   Re ) is smallest at S=1. Also, in the considered examples, the drag values for the minimum-drag shapes and equal-volume minimum-drag spheroids are sufficiently close.

Author(s):  
Michael Zabarankin

A necessary optimality condition for the problem of the minimum-resistance shape for a rigid three-dimensional inclusion displaced in an unbounded isotropic elastic medium subject to a constraint on the volume of the inclusion is obtained through Betti's reciprocal work theorem. It generalizes Pironneau's optimality condition for the minimum-drag shape for a rigid body immersed into a uniform Stokes flow and is specialized for axisymmetric inclusions in axisymmetric and transversal translations. In both cases of translation, the three-dimensional displacement field is represented in terms of generalized analytic functions, and the three-dimensional elastostatics problem is reduced to boundary-integral equations (BIEs) via the generalized Cauchy integral formula. Minimum-resistance shapes are found in the semi-analytical form of functional series from an iterative procedure coupling the optimality condition and the BIEs. They are compared with the minimum-resistance spheroids and with the minimum-resistance spindle-shaped and lens-shaped bodies. Remarkably, in the axisymmetric translation, the minimum-resistance shapes transition from spindle-like shapes to almost prolate spheroidal shapes as the Poisson ratio changes from 1/2 to 0, whereas in the transversal translation, they are close to oblate spheroidal shapes for any Poisson ratio.


Author(s):  
Michael Zabarankin

An approach of generalized analytic functions to the magnetohydrodynamic (MHD) problem of an electrically conducting viscous incompressible flow past a solid non-magnetic body of revolution is presented. In this problem, the magnetic field and the body’s axis of revolution are aligned with the flow at infinity, and the fluid and body are assumed to have the same magnetic permeability. For the linearized MHD equations with non-zero Hartmann, Reynolds and magnetic Reynolds numbers ( M , Re and Re m , respectively), the fluid velocity, pressure and magnetic fields in the fluid and body are represented by four generalized analytic functions from two classes: r -analytic and H -analytic. The number of the involved functions from each class depends on whether the Cowling number S= M 2 /( Re m   Re ) is 1 or is not 1. This corresponds to the well-known peculiarity of the case S=1. The MHD problem is proved to have a unique solution and is reduced to boundary integral equations based on the Cauchy integral formula for generalized analytic functions. The approach is tested in the MHD problem for a sphere and is demonstrated in finding the minimum-drag spheroids subject to a volume constraint for S<1, S=1 and S>1. The analysis shows that as a function of S, the drag of the minimum-drag spheroids has a minimum at S=1, but with respect to the equal-volume sphere, drag reduction is smallest for S=1 and becomes more significant for S≫1.


2015 ◽  
Vol 773 ◽  
pp. 154-177 ◽  
Author(s):  
Basile Gallet ◽  
Charles R. Doering

We investigate the behaviour of flows, including turbulent flows, driven by a horizontal body force and subject to a vertical magnetic field, with the following question in mind: for a very strong applied magnetic field, is the flow mostly two-dimensional, with remaining weak three-dimensional fluctuations, or does it become exactly 2-D, with no dependence along the vertical direction? We first focus on the quasi-static approximation, i.e. the asymptotic limit of vanishing magnetic Reynolds number, $\mathit{Rm}\ll 1$: we prove that the flow becomes exactly 2-D asymptotically in time, regardless of the initial condition and provided that the interaction parameter $N$ is larger than a threshold value. We call this property absolute two-dimensionalization: the attractor of the system is necessarily a (possibly turbulent) 2-D flow. We then consider the full magnetohydrodynamic (MHD) equations and prove that, for low enough $\mathit{Rm}$ and large enough $N$, the flow becomes exactly 2-D in the long-time limit provided the initial vertically dependent perturbations are infinitesimal. We call this phenomenon linear two-dimensionalization: the (possibly turbulent) 2-D flow is an attractor of the dynamics, but it is not necessarily the only attractor of the system. Some 3-D attractors may also exist and be attained for strong enough initial 3-D perturbations. These results shed some light on the existence of a dissipation anomaly for MHD flows subject to a strong external magnetic field.


1961 ◽  
Vol 10 (3) ◽  
pp. 459-465 ◽  
Author(s):  
W. Chester

The problem described by the title is investigated when both the magnetic field and the streaming motion of the fluid at infinity are uniform and parallel to the axis of symmetry of the body. The flow pattern depends on three parameters, the Reynolds number R, the magnetic Reynolds number Rm and the Hartmann number M. In this paper it is assumed that M [Gt ] 1, M [Gt ] R, M [Gt ] Rm (no other restrictions on the parameters are imposed, so that R and Rm need not be small). The flow pattern then consists of an undisturbed uniform stream outside a cylinder circumscribing the body with generators parallel to the stream. Inside this cylinder the fluid is at rest. The leading term in the expression for the drag on the body is obtained.


1970 ◽  
Vol 41 (2) ◽  
pp. 435-452 ◽  
Author(s):  
H. K. Moffatt

The effect of turbulence on a magnetic field whose length-scale L is initially large compared with the scale l of the turbulence is considered. There are no external sources for the field, and in the absence of turbulence it decays by ohmic dissipation. It is assumed that the magnetic Reynolds number Rm = u0l/λ (where u0 is the root-mean-square velocity and λ the magnetic diffusivity) is small. It is shown that to lowest order in the small quantities l/L and Rm, isotropic turbulence has no effect on the large-scale field; but that turbulence that lacks reflexional symmetry is capable of amplifying Fourier components of the field on length scales of order Rm−2l and greater. In the case of turbulence whose statistical properties are invariant under rotation of the axes of reference, but not under reflexions in a point, it is shown that the magnetic energy density of a magnetic field which is initially a homogeneous random function of position with a particularly simple spectrum ultimately increases as t−½exp (α2t/2λ3) where α(= O(u02l)) is a certain linear functional of the spectrum tensor of the turbulence. An analogous result is obtained for an initially localized field.


1981 ◽  
Vol 104 ◽  
pp. 419-443 ◽  
Author(s):  
J. Léorat ◽  
A. Pouquet ◽  
U. Frisch

Liquid-sodium-cooled breeder reactors may soon be operating at magnetic Reynolds numbers RM where magnetic fields can be self-excited by a dynamo mechanism (as first suggested by Bevir 1973). Such flows have kinetic Reynolds numbers RV of the order of 107 and are therefore highly turbulent.This leads us to investigate the behaviour of MHD turbulence with high RV and low magnetic Prandtl numbers. We use the eddy-damped quasi-normal Markovian closure applied to the MHD equations. For simplicity we restrict ourselves to homogeneous and isotropic turbulence, but we do include helicity.We obtain a critical magnetic Reynolds number RMc of the order of a few tens (non-helical case) above which magnetic energy is present. RMc is practically independent of RV (in the range 40 to 106). RMc can be considerably decreased by the presence of helicity: when the overall size of the flow L is much larger than the integral scale l0, RMc can drop below unity as suggested by an α-effect argument. When L ≈ l0 the drop can still be substantial (factor of 6) when helicity is a maximum. We examine how the turbulence is modified when RM crosses RMc: presence of magnetic energy, decreased kinetic energy, steepening of kinetic-energy spectrum, etc.We make no attempt to obtain quantitative estimates for a breeder reactor, but discuss some of the possible consequences of exceeding RMc, such as decreased turbulent heat transport. More precise information may be obtained from numerical simulations and experiments (including some in the subcritical regime).


2006 ◽  
Vol 306-308 ◽  
pp. 465-470 ◽  
Author(s):  
Kuang-Chong Wu

A novel integral equation method is developed in this paper for the analysis of two-dimensional general piezoelectric cracked bodies. In contrast to the conventional boundary integral methods based on reciprocal work theorem, the present method is derived from Stroh’s formalism for anisotropic elasticity in conjunction with Cauchy’s integral formula. The proposed boundary integral equations contain generalized boundary displacement (displacements and electric potential) gradients and generalized tractions (tractions and electric displacement) on the non-crack boundary, and the generalized dislocations on the crack lines. The boundary integral equations can be solved using Gaussian-type integration formulas without dividing the boundary into discrete elements. The crack-tip singularity is explicitly incorporated and the generalized intensity factors can be computed directly. Numerical examples of generalized stress intensity factors are given to illustrate the effectiveness and accuracy of the present method.


Sign in / Sign up

Export Citation Format

Share Document